Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli

Fu-Liang Du, Hui-Lei Yu, Jian-He Xu, Chun-Xiu Li

Bioresources and Bioprocessing ›› 2014, Vol. 1 ›› Issue (1) : 10.

Bioresources and Bioprocessing All Journals
Bioresources and Bioprocessing ›› 2014, Vol. 1 ›› Issue (1) : 10. DOI: 10.1186/s40643-014-0010-z
Research
research-article

Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli

Author information +
History +

Abstract

Background

Limonene is an important monoterpene used as a chemical commodity and precursor for producing biofuels, flavor and medicinal compounds.

Results

In this paper, we engineered Escherichia coli by embedding two exogenous genes encoding a limonene synthase (LS) and a geranyl diphosphate synthase (GPPS) for production of limonene. Out of 12 E. coli strains transformed with various plasmids, the best one with p15T7-ls-gpps produced limonene with a titer of 4.87 mg/L. In order to enhance the limonene production, two rate-limiting enzymes in the endogenous MEP pathway of E. coli, 1-deoxy-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate isomerase (IDI), were overexpressed consecutively on vector pET21a+, resulting in a production of 17.4 mglimonene/L at 48 h.

Conclusions

After the preliminary optimization of the medium in a two-phase culture system composed of n-hexadecane (1/50, Vorg/Vaq), the final production of limonene was raised up to 35.8 mg/L, representing approximately a 7-fold improvement compared to the initial titer.

Keywords

Limonene / Biosynthesis / Escherichia coli / MEP pathway / Geranyl pyrophosphate synthase / Limonene synthase / Two-phase culture system

Cite this article

Download citation ▾
Fu-Liang Du, Hui-Lei Yu, Jian-He Xu, Chun-Xiu Li. Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli. Bioresources and Bioprocessing, 2014, 1(1): 10 https://doi.org/10.1186/s40643-014-0010-z

References

[1.]
Misawa N. Pathway engineering for functional isoprenoids. Curr Opin Biotechnol, 2011, 22: 627-633.
CrossRef Google scholar
[2.]
Colby SM, Alonso WR, Katahira EJ, Mcgarvey DJ, Croteau R. 4S-Limonene synthase from the oil glands of spearmint (Mentha spicata): cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J Biol Chem, 1993, 268: 23016-23024.
[3.]
Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng, 2013, 19: 33-41.
CrossRef Google scholar
[4.]
Carter OA, Peters RJ, Croteau R. Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry, 2003, 64: 425-433.
CrossRef Google scholar
[5.]
Duetz WA, Bouwmeester H, Beilen JB, Witholt B. Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol, 2003, 61: 269-277.
CrossRef Google scholar
[6.]
Keasling JD. Manufacturing molecules through metabolic engineering. Science, 2010, 330: 1355-1358.
CrossRef Google scholar
[7.]
Tracy NI, ChenD CDW, Price GL. Hydrogenated monoterpenes as diesel fuel additives. Fuel, 2009, 88: 2238-2240.
CrossRef Google scholar
[8.]
Campos N, Rodriguez-Concepcion M, Sauret-Gueto S, Gallego F, Lois LM, Boronat A. Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-c-methyl-d-erythritol-4-phosphate pathway for isoprenoid biosynthesis. Biochem J, 2001, 353: 59-67.
CrossRef Google scholar
[9.]
Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol, 2003, 21: 796-802.
CrossRef Google scholar
[10.]
Pitera DJ, Paddon CJ, Newman JD, Keasling JD. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng, 2007, 9 2 193-207.
CrossRef Google scholar
[11.]
Hunter WN. The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Chem, 2007, 282 30 21573-21577.
CrossRef Google scholar
[12.]
Croteau RB, Davis EM, Ringer KL, Wildung MR. (−)-Menthol biosynthesis and molecular genetics. Naturwissenschaften, 2005, 92: 562-577.
CrossRef Google scholar
[13.]
Burke C, Croteau R. Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys, 2002, 405: 130-136.
CrossRef Google scholar
[14.]
Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science, 2010, 330: 70-74.
CrossRef Google scholar
[15.]
Leonarda E, Ajikumara PK, Thayer K, Xiao WH, Mo JD, Tidorb B, Stephanopoulosa G, Thayer K, Prather KLJ. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci, 2010, 107: 13654-13659.
CrossRef Google scholar
[16.]
Xue J, Ahring BK. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol, 2011, 77: 2399-2405.
CrossRef Google scholar
[17.]
Zhao Y, Yang J, Qin B, Li Y, Sun Y, Su S, Xian M. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol, 2011, 90: 1915-1922.
CrossRef Google scholar
[18.]
Zurbriggen A, Kirst H, Melis A. Isoprene production via the mevalonic acid pathway in Escherichia coli (bacteria). BioEnergy Research, 2012, 5: 814-828.
CrossRef Google scholar
[19.]
Lv X, Xu H, Yu H. Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl Microbiol Biotechnol, 2013, 97: 2357-2365.
CrossRef Google scholar
[20.]
Williams DC, McGarvey DJ, Katahira EJ, Croteau R. Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry, 1998, 37: 12213-12220.
CrossRef Google scholar
[21.]
Brosius J, Erfle M, Storella J. Spacing of the −10 and −35 regions in the tac promoter: Effect on its in vivo activity. J Biol Chem, 1985, 260: 3539-3541.
[22.]
Brunner M, Bujard H. Promoter recognition and promoter strength in the Escherichia coli system. EMBO J, 1987, 6: 3139-3144.
[23.]
Jang HJ, Yoon SH, Ryu HK, Kim JH, Wang CL, Kim JY, Oh DK, Kim SW. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system. Microb Cell Fact, 2011, 10: 59.
CrossRef Google scholar
[24.]
Zhou K, Zou R, Zhang C, Stephanopoulos G, Too HP. Optimization of amorphadiene synthesis in Bacillus subtilis via transcriptional, translational, and media modulation. Biotechnol Bioeng, 2013, 110: 2556-2561.
CrossRef Google scholar
[25.]
Song HB, Demain AL. An improved colorimetric assay for polyols. Anal Biochem, 1977, 81 1 18-20.
CrossRef Google scholar
[26.]
Reiling KK, Yoshikuni Y, Martin VJ, Newman J, Bohlmann J, Keasling JD. Mono and diterpene production in Escherichia coli. Biotechnol Bioeng, 2004, 87: 200-212.
CrossRef Google scholar
[27.]
Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose-5-phosphate synthase. Plant J, 2000, 22 6 503-513.
CrossRef Google scholar
[28.]
Miller B, Heuser T, Zimmer W. Functional involvement of a deoxy-xylulose-5-phosphate reductoisomerase gene harboring locus of Synechococcus leopoliensisin isoprenoid biosynthesis. FEBS Lett, 2000, 481: 221-226.
CrossRef Google scholar
[29.]
Estevez JM, Cantero A, Reindl A, Reichler S, Leon P. 1-Deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem, 2001, 276 25 22901-22909.
CrossRef Google scholar
[30.]
Das A, Yoon SH, Lee SH, Kim JY, Oh DK, Kim SW. An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol, 2007, 77 3 505-512.
CrossRef Google scholar
[31.]
Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, Alon U. Just-in-time transcription program in metabolic pathways. Nat Genet, 2004, 36: 486-491.
CrossRef Google scholar
[32.]
Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H. Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol, 2007, 73 4 1355-1361.
CrossRef Google scholar
[33.]
Morrone D, Lowry L, Determan MK, Hershey DM, Xu M, Peters RJ. Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl Microbiol Biotechnol, 2010, 85 6 1893-1906.
CrossRef Google scholar
[34.]
Meng H, Wang Y, Hua Q, Zhang S, Wang X. In silico analysis and experimental improvement of taxadiene heterologous biosynthesis in Escherichia coli. Biotechnol Bioprocess Eng, 2011, 16 2 205-215.
CrossRef Google scholar
[35.]
Yuan LZ, Rouvière PE, Larossa RA, Suh W. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng, 2006, 8 1 79-90.
CrossRef Google scholar
[36.]
Kajiwara S, Fraser PD, Kondo K, Misawa N. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J, 1997, 324: 421-426.
CrossRef Google scholar
[37.]
Ghimire GP, Lee HC, Sohng JK. Improved Squalene Production via Modulation of the Methylerythritol 4-Phosphate Pathway and Heterologous Expression of Genes from Streptomyces peucetius ATCC 27952 Escherichia coli. Appl Environ Microbiol, 2009, 75 22 7291-7293.
CrossRef Google scholar
[38.]
Albrecht M, Misawa N, Sandmann G. Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin. Biotechnol Lett, 1999, 21 9 791-795.
CrossRef Google scholar

46

Accesses

57

Citations

8

Altmetric

Detail

Sections
Recommended

/