Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli
Fu-Liang Du , Hui-Lei Yu , Jian-He Xu , Chun-Xiu Li
Bioresources and Bioprocessing ›› 2014, Vol. 1 ›› Issue (1) : 10
Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli
Limonene is an important monoterpene used as a chemical commodity and precursor for producing biofuels, flavor and medicinal compounds.
In this paper, we engineered Escherichia coli by embedding two exogenous genes encoding a limonene synthase (LS) and a geranyl diphosphate synthase (GPPS) for production of limonene. Out of 12 E. coli strains transformed with various plasmids, the best one with p15T7-ls-gpps produced limonene with a titer of 4.87 mg/L. In order to enhance the limonene production, two rate-limiting enzymes in the endogenous MEP pathway of E. coli, 1-deoxy-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate isomerase (IDI), were overexpressed consecutively on vector pET21a+, resulting in a production of 17.4 mglimonene/L at 48 h.
After the preliminary optimization of the medium in a two-phase culture system composed of n-hexadecane (1/50, Vorg/Vaq), the final production of limonene was raised up to 35.8 mg/L, representing approximately a 7-fold improvement compared to the initial titer.
Limonene / Biosynthesis / Escherichia coli / MEP pathway / Geranyl pyrophosphate synthase / Limonene synthase / Two-phase culture system
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
|
| [36] |
|
| [37] |
|
| [38] |
|
/
| 〈 |
|
〉 |