Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli

Fu-Liang Du , Hui-Lei Yu , Jian-He Xu , Chun-Xiu Li

Bioresources and Bioprocessing ›› 2014, Vol. 1 ›› Issue (1) : 10

PDF
Bioresources and Bioprocessing ›› 2014, Vol. 1 ›› Issue (1) : 10 DOI: 10.1186/s40643-014-0010-z
Research
research-article

Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli

Author information +
History +
PDF

Abstract

Background

Limonene is an important monoterpene used as a chemical commodity and precursor for producing biofuels, flavor and medicinal compounds.

Results

In this paper, we engineered Escherichia coli by embedding two exogenous genes encoding a limonene synthase (LS) and a geranyl diphosphate synthase (GPPS) for production of limonene. Out of 12 E. coli strains transformed with various plasmids, the best one with p15T7-ls-gpps produced limonene with a titer of 4.87 mg/L. In order to enhance the limonene production, two rate-limiting enzymes in the endogenous MEP pathway of E. coli, 1-deoxy-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate isomerase (IDI), were overexpressed consecutively on vector pET21a+, resulting in a production of 17.4 mglimonene/L at 48 h.

Conclusions

After the preliminary optimization of the medium in a two-phase culture system composed of n-hexadecane (1/50, Vorg/Vaq), the final production of limonene was raised up to 35.8 mg/L, representing approximately a 7-fold improvement compared to the initial titer.

Keywords

Limonene / Biosynthesis / Escherichia coli / MEP pathway / Geranyl pyrophosphate synthase / Limonene synthase / Two-phase culture system

Cite this article

Download citation ▾
Fu-Liang Du, Hui-Lei Yu, Jian-He Xu, Chun-Xiu Li. Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli. Bioresources and Bioprocessing, 2014, 1(1): 10 DOI:10.1186/s40643-014-0010-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Misawa N. Pathway engineering for functional isoprenoids. Curr Opin Biotechnol, 2011, 22: 627-633.

[2]

Colby SM, Alonso WR, Katahira EJ, Mcgarvey DJ, Croteau R. 4S-Limonene synthase from the oil glands of spearmint (Mentha spicata): cDNA isolation, characterization, and bacterial expression of the catalytically active monoterpene cyclase. J Biol Chem, 1993, 268: 23016-23024.

[3]

Alonso-Gutierrez J, Chan R, Batth TS, Adams PD, Keasling JD, Petzold CJ, Lee TS. Metabolic engineering of Escherichia coli for limonene and perillyl alcohol production. Metab Eng, 2013, 19: 33-41.

[4]

Carter OA, Peters RJ, Croteau R. Monoterpene biosynthesis pathway construction in Escherichia coli. Phytochemistry, 2003, 64: 425-433.

[5]

Duetz WA, Bouwmeester H, Beilen JB, Witholt B. Biotransformation of limonene by bacteria, fungi, yeasts, and plants. Appl Microbiol Biotechnol, 2003, 61: 269-277.

[6]

Keasling JD. Manufacturing molecules through metabolic engineering. Science, 2010, 330: 1355-1358.

[7]

Tracy NI, ChenD CDW, Price GL. Hydrogenated monoterpenes as diesel fuel additives. Fuel, 2009, 88: 2238-2240.

[8]

Campos N, Rodriguez-Concepcion M, Sauret-Gueto S, Gallego F, Lois LM, Boronat A. Escherichia coli engineered to synthesize isopentenyl diphosphate and dimethylallyl diphosphate from mevalonate: a novel system for the genetic analysis of the 2-c-methyl-d-erythritol-4-phosphate pathway for isoprenoid biosynthesis. Biochem J, 2001, 353: 59-67.

[9]

Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol, 2003, 21: 796-802.

[10]

Pitera DJ, Paddon CJ, Newman JD, Keasling JD. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng, 2007, 9 2 193-207.

[11]

Hunter WN. The non-mevalonate pathway of isoprenoid precursor biosynthesis. J Biol Chem, 2007, 282 30 21573-21577.

[12]

Croteau RB, Davis EM, Ringer KL, Wildung MR. (−)-Menthol biosynthesis and molecular genetics. Naturwissenschaften, 2005, 92: 562-577.

[13]

Burke C, Croteau R. Geranyl diphosphate synthase from Abies grandis: cDNA isolation, functional expression, and characterization. Arch Biochem Biophys, 2002, 405: 130-136.

[14]

Ajikumar PK, Xiao WH, Tyo KEJ, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for taxol precursor overproduction in Escherichia coli. Science, 2010, 330: 70-74.

[15]

Leonarda E, Ajikumara PK, Thayer K, Xiao WH, Mo JD, Tidorb B, Stephanopoulosa G, Thayer K, Prather KLJ. Combining metabolic and protein engineering of a terpenoid biosynthetic pathway for overproduction and selectivity control. Proc Natl Acad Sci, 2010, 107: 13654-13659.

[16]

Xue J, Ahring BK. Enhancing isoprene production by genetic modification of the 1-deoxy-d-xylulose-5-phosphate pathway in Bacillus subtilis. Appl Environ Microbiol, 2011, 77: 2399-2405.

[17]

Zhao Y, Yang J, Qin B, Li Y, Sun Y, Su S, Xian M. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol, 2011, 90: 1915-1922.

[18]

Zurbriggen A, Kirst H, Melis A. Isoprene production via the mevalonic acid pathway in Escherichia coli (bacteria). BioEnergy Research, 2012, 5: 814-828.

[19]

Lv X, Xu H, Yu H. Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl Microbiol Biotechnol, 2013, 97: 2357-2365.

[20]

Williams DC, McGarvey DJ, Katahira EJ, Croteau R. Truncation of limonene synthase preprotein provides a fully active ‘pseudomature’ form of this monoterpene cyclase and reveals the function of the amino-terminal arginine pair. Biochemistry, 1998, 37: 12213-12220.

[21]

Brosius J, Erfle M, Storella J. Spacing of the −10 and −35 regions in the tac promoter: Effect on its in vivo activity. J Biol Chem, 1985, 260: 3539-3541.

[22]

Brunner M, Bujard H. Promoter recognition and promoter strength in the Escherichia coli system. EMBO J, 1987, 6: 3139-3144.

[23]

Jang HJ, Yoon SH, Ryu HK, Kim JH, Wang CL, Kim JY, Oh DK, Kim SW. Retinoid production using metabolically engineered Escherichia coli with a two-phase culture system. Microb Cell Fact, 2011, 10: 59.

[24]

Zhou K, Zou R, Zhang C, Stephanopoulos G, Too HP. Optimization of amorphadiene synthesis in Bacillus subtilis via transcriptional, translational, and media modulation. Biotechnol Bioeng, 2013, 110: 2556-2561.

[25]

Song HB, Demain AL. An improved colorimetric assay for polyols. Anal Biochem, 1977, 81 1 18-20.

[26]

Reiling KK, Yoshikuni Y, Martin VJ, Newman J, Bohlmann J, Keasling JD. Mono and diterpene production in Escherichia coli. Biotechnol Bioeng, 2004, 87: 200-212.

[27]

Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A. Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-d-xylulose-5-phosphate synthase. Plant J, 2000, 22 6 503-513.

[28]

Miller B, Heuser T, Zimmer W. Functional involvement of a deoxy-xylulose-5-phosphate reductoisomerase gene harboring locus of Synechococcus leopoliensisin isoprenoid biosynthesis. FEBS Lett, 2000, 481: 221-226.

[29]

Estevez JM, Cantero A, Reindl A, Reichler S, Leon P. 1-Deoxy-d-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem, 2001, 276 25 22901-22909.

[30]

Das A, Yoon SH, Lee SH, Kim JY, Oh DK, Kim SW. An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl Microbiol Biotechnol, 2007, 77 3 505-512.

[31]

Zaslaver A, Mayo AE, Rosenberg R, Bashkin P, Sberro H, Tsalyuk M, Surette MG, Alon U. Just-in-time transcription program in metabolic pathways. Nat Genet, 2004, 36: 486-491.

[32]

Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H. Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl Environ Microbiol, 2007, 73 4 1355-1361.

[33]

Morrone D, Lowry L, Determan MK, Hershey DM, Xu M, Peters RJ. Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering. Appl Microbiol Biotechnol, 2010, 85 6 1893-1906.

[34]

Meng H, Wang Y, Hua Q, Zhang S, Wang X. In silico analysis and experimental improvement of taxadiene heterologous biosynthesis in Escherichia coli. Biotechnol Bioprocess Eng, 2011, 16 2 205-215.

[35]

Yuan LZ, Rouvière PE, Larossa RA, Suh W. Chromosomal promoter replacement of the isoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng, 2006, 8 1 79-90.

[36]

Kajiwara S, Fraser PD, Kondo K, Misawa N. Expression of an exogenous isopentenyl diphosphate isomerase gene enhances isoprenoid biosynthesis in Escherichia coli. Biochem J, 1997, 324: 421-426.

[37]

Ghimire GP, Lee HC, Sohng JK. Improved Squalene Production via Modulation of the Methylerythritol 4-Phosphate Pathway and Heterologous Expression of Genes from Streptomyces peucetius ATCC 27952 Escherichia coli. Appl Environ Microbiol, 2009, 75 22 7291-7293.

[38]

Albrecht M, Misawa N, Sandmann G. Metabolic engineering of the terpenoid biosynthetic pathway of Escherichia coli for production of the carotenoids β-carotene and zeaxanthin. Biotechnol Lett, 1999, 21 9 791-795.

AI Summary AI Mindmap
PDF

209

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/