Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli
Fu-Liang Du, Hui-Lei Yu, Jian-He Xu, Chun-Xiu Li
Bioresources and Bioprocessing ›› 2014, Vol. 1 ›› Issue (1) : 10.
Enhanced limonene production by optimizing the expression of limonene biosynthesis and MEP pathway genes in E. coli
Limonene is an important monoterpene used as a chemical commodity and precursor for producing biofuels, flavor and medicinal compounds.
In this paper, we engineered Escherichia coli by embedding two exogenous genes encoding a limonene synthase (LS) and a geranyl diphosphate synthase (GPPS) for production of limonene. Out of 12 E. coli strains transformed with various plasmids, the best one with p15T7-ls-gpps produced limonene with a titer of 4.87 mg/L. In order to enhance the limonene production, two rate-limiting enzymes in the endogenous MEP pathway of E. coli, 1-deoxy-xylulose-5-phosphate synthase (DXS) and isopentenyl diphosphate isomerase (IDI), were overexpressed consecutively on vector pET21a+, resulting in a production of 17.4 mglimonene/L at 48 h.
After the preliminary optimization of the medium in a two-phase culture system composed of n-hexadecane (1/50, Vorg/Vaq), the final production of limonene was raised up to 35.8 mg/L, representing approximately a 7-fold improvement compared to the initial titer.
Limonene / Biosynthesis / Escherichia coli / MEP pathway / Geranyl pyrophosphate synthase / Limonene synthase / Two-phase culture system
[1.] |
|
[2.] |
|
[3.] |
|
[4.] |
|
[5.] |
|
[6.] |
|
[7.] |
|
[8.] |
|
[9.] |
|
[10.] |
|
[11.] |
|
[12.] |
|
[13.] |
|
[14.] |
|
[15.] |
|
[16.] |
|
[17.] |
|
[18.] |
|
[19.] |
|
[20.] |
|
[21.] |
|
[22.] |
|
[23.] |
|
[24.] |
|
[25.] |
|
[26.] |
|
[27.] |
|
[28.] |
|
[29.] |
|
[30.] |
|
[31.] |
|
[32.] |
|
[33.] |
|
[34.] |
|
[35.] |
|
[36.] |
|
[37.] |
|
[38.] |
|
/
〈 |
|
〉 |