Therapeutic potential of the neutralizing monoclonal antibody 45G3 against encephalomyocarditis virus

Yanfang Zhang, Zhiying Wang, Yaohui Fang, Qiong Zhu, Jie Fu, Sijing Hu, Jiayin Jin, Min Zhou, Xijia Liu, Danna Zhang, Shouwei Huang, Yali Deng, Lingling Xie, Shu Shen, Jing Ye, Fei Deng, Shengbo Cao

Animal Diseases ›› 2025, Vol. 5 ›› Issue (1) : 1.

Animal Diseases ›› 2025, Vol. 5 ›› Issue (1) : 1. DOI: 10.1186/s44149-024-00154-7
Original Article

Therapeutic potential of the neutralizing monoclonal antibody 45G3 against encephalomyocarditis virus

Author information +
History +

Abstract

Encephalomyocarditis virus (EMCV), a potential zoonotic pathogen, poses significant socioeconomic and public health challenges across various host species. Although EMCV rarely triggers severe clinical symptoms in humans, its widespread prevalence and unique biological characteristics underscore the need for continuous surveillance and the development of effective therapeutics and prophylactics. In this study, we evaluated the neutralizing effects of a monoclonal antibody derived from the spleens of mice immunized with EMCV virus-like particles (VLPs), both in vitro and in vivo. Using recombinant DNA technology, we engineered a baculovirus system to express EMCVs P12A and 3C, facilitating the production of VLPs in Sf9 cells. These VLPs serve as antigens to immunize mice, leading to the isolation of the monoclonal antibody 45G3. This antibody exhibited high specificity for EMCV conformational epitopes, excluding linear epitopes, and demonstrated potent in vitro neutralizing activity, with an IC50 of 0.01873 μg/mL. Immunoelectron microscopy (IEM) revealed a strong direct interaction between the 45G3 antibody and EMCV particles. Virus adsorption inhibition assays demonstrated that 45G3 effectively blocked viral attachment, thereby preventing further infection of host cells. These findings further support the notion of a robust interaction between the virus and the antibody. Moreover, in vivo assessments revealed that 45G3 significantly reduced viral loads in treated mice and improved survival outcomes following EMCV exposure. Additionally, posttreatment analysis revealed reduced tissue damage and a markedly decreased inflammatory response in the brain, indicating that the 45G3 antibody effectively blocked viral infection, thereby mitigating tissue damage and enhancing survival. These findings position 45G3 as a promising candidate for EMCV management and provide a strong foundation for the future development of antiviral drugs targeting this widespread virus.

Cite this article

Download citation ▾
Yanfang Zhang, Zhiying Wang, Yaohui Fang, Qiong Zhu, Jie Fu, Sijing Hu, Jiayin Jin, Min Zhou, Xijia Liu, Danna Zhang, Shouwei Huang, Yali Deng, Lingling Xie, Shu Shen, Jing Ye, Fei Deng, Shengbo Cao. Therapeutic potential of the neutralizing monoclonal antibody 45G3 against encephalomyocarditis virus. Animal Diseases, 2025, 5(1): 1 https://doi.org/10.1186/s44149-024-00154-7

References

[]
Abramson J, Adler J, Dunger J, Evans R, Green T, Pritzel A, Ronneberger O, Willmore L, Ballard AJ, Bambrick J, et al.. Accurate structure prediction of biomolecular interactions with AlphaFold 3 Nature, 2024, 630(8016): 493-500.
CrossRef Google scholar
[]
An DJ, Jeong W, Jeoung HY, Yoon SH, Kim HJ, Choi CU, Park BK. Encephalomyocarditis in Korea: Serological survey in pigs and phylogenetic analysis of two historical isolates Veterinary Microbiology, 2009, 137(1–2): 37-44.
CrossRef Google scholar
[]
Bahar MW, Nasta V, Fox H, Sherry L. A conserved glutathione binding site in poliovirus is a target for antivirals and vaccine stabilization Communications Biology, 2022, 5(1): 1293.
CrossRef Google scholar
[]
Billinis C. Encephalomyocarditis virus infection in wildlife species in Greece Journal of Wildlife Diseases, 2009, 45(2): 522-526.
CrossRef Google scholar
[]
Camp, J.V., Desvars-Larrive, A., 2022. Monitoring urban zoonotic virus activity: Are city rats a promising surveillance tool for emerging viruses? Viruses 14 (7). https://doi.org/10.3390/v14071516.
[]
Canelli E, Luppi A, Lavazza A, Lelli D, Sozzi E, Martin AM, Gelmetti D, Pascotto E, Sandri C, Magnone W, Cordioli P. Encephalomyocarditis virus infection in an Italian zoo Virology Journal, 2010, 7: 64.
CrossRef Google scholar
[]
Cardeti, G., V. Mariano, C. Eleni, M. Aloisi, G. Grifoni, S. Sittinieri, G. Dante, V. Antognetti, E. A. Foglia, A. Cersini, and A. Nardi. 2016. Encephalomyocarditis virus infection in Macaca sylvanus and Hystrix cristata from an Italian rescue center for wild and exotic animals. Virology Journal 13 (1): 193. https://doi.org/10.1186/s12985-016-0653-9.
[]
Carocci M, Bakkali-Kassimi L The Encephalomyocarditis Virus. Virulence, 2012, 3(4): 351-367.
CrossRef Google scholar
[]
Carocci M, Cordonnier N, Huet H, Romey A, Relmy A, Gorna K, Blaise-Boisseau S, Zientara S, Kassimi LB. Encephalomyocarditis virus 2A protein is required for viral pathogenesis and inhibition of apoptosis Journal of Virology, 2011, 85(20): 10741-10754.
CrossRef Google scholar
[]
Cherry, S., 2019. Encephalomyocarditis virus entry unveiled. mBio 10 (2). https://doi.org/10.1128/mBio.00305-19.
[]
Czechowicz, J., Huaman, J.L., Forshey, B.M., Morrison, A.C., Castillo, R., Huaman, A., Caceda, R., Eza, D., Rocha, C., Blair, P.J., Olson, J.G., Kochel, T.J., 2011. Prevalence and risk factors for encephalomyocarditis virus infection in Peru. Vector borne and zoonotic diseases (Larchmont, N.Y.) 11 (4), 367–374. https://doi.org/10.1089/vbz.2010.0029.
[]
Dea, S., Bilodeau, R., Sauvageau, R., Martineau, G.P., 1991. Outbreaks in Quebec pig farms of respiratory and reproductive problems associated with encephalomyocarditis virus. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc. 3 (4), 275–282. https://doi.org/10.1177/104063879100300401.
[]
Feng R, Wei J, Zhang H, Fan J, Li X, Wang D, Xie J, Qiao Z, Li M, Bai J, Ma Z. National serosurvey of encephalomyocarditis virus in healthy people and pigs in China Archives of Virology, 2015, 160(12): 2957-2964.
CrossRef Google scholar
[]
Foglia EA, Pezzoni G, Bonilauri P, Torri D, Grazioli S, Brocchi E. A recent view about encephalomyocarditis virus circulating in compartmentalized animal population in Northern Italy Science and Reports, 2023, 13(1): 592.
CrossRef Google scholar
[]
Gainer JH. Encephalomyocarditis virus infections in Florida, 1960–1966 Journal of the American Veterinary Medical Association, 1967, 151(4): 421-425.
CrossRef Google scholar
[]
Ge X, Zhao D, Liu C, Wang F, Guo X, Yang H. Seroprevalence of encephalomyocarditis virus in intensive pig farms in China The Veterinary Record, 2010, 166(5): 145-146.
CrossRef Google scholar
[]
Gelmetti D, Meroni A, Brocchi E, Koenen F, Cammarata G. Pathogenesis of encephalomyocarditis experimental infection in young piglets: A potential animal model to study viral myocarditis Veterinary Research, 2006, 37(1): 15-23.
CrossRef Google scholar
[]
Guo, C., D. Reus, J. D. Coey, S. Sukumar, B. Lang, J. Mclauchlan, S. Boulant, M. L. Stanifer, and C. G. G. Bamford. 2021. Conserved Induction of Distinct Antiviral Signalling Kinetics by Primate Interferon Lambda 4 Proteins. Front Immunol 12:772588. https://doi.org/10.3389/fimmu.2021.772588.
[]
Han, Y., Xie, J., Xu, S., Bi, Y., Li, X., Zhang, H., Idris, A., Bai, J., Feng, R., 2021. Encephalomyocarditis virus abrogates the interferon beta signaling pathway via its structural protein VP2. Journal of virology 95 (6). https://doi.org/10.1128/jvi.01590-20.
[]
Han, R., Liang, L., Qin, T., Xiao, S., Liang, R., 2022. Encephalomyocarditis virus 2A protein inhibited apoptosis by interaction with annexin A2 through JNK/c-Jun pathway. Viruses 14 (2). https://doi.org/10.3390/v14020359.
[]
Han, W., Zhang, J., Li, M., An, M., Li, L., 2023. Analysis of chromatin accessibility changes induced by BMMC recognition of foot-and-mouth disease virus-like particles through ATAC-seq. International journal of molecular sciences 24 (23). https://doi.org/10.3390/ijms242317044.
[]
Helwig, F.C., Schmidt, C.H., 1945. A filter-passing agent producing interstitial myocarditis in anthropoid apes and small animals. Science (New York, N.Y.) 102 (2637), 31–33. https://doi.org/10.1126/science.102.2637.31.
[]
Hu, S., Zha, Y., Yang, W., Cui, K., 2022. Dysregulation of NK and CD8(+)T Cells by the microbiota promotes the progression of lung cancer. 2022 7057089. https://doi.org/10.1155/2022/7057089.
[]
Huang L, Xiong T, Yu H, Zhang Q, Zhang K, Li C, Hu L, Zhang Y, Zhang L, Liu Q, Wang S, He X, Bu Z, Cai X, Cui S, Li J, Weng C. Encephalomyocarditis virus 3C protease attenuates type I interferon production through disrupting the TANK-TBK1-IKKε-IRF3 complex The Biochemical Journal, 2017, 474(12): 2051-2065.
CrossRef Google scholar
[]
Krissinel E, Henrick K. Inference of macromolecular assemblies from crystalline state Journal of Molecular Biology, 2007, 372(3): 774-797.
CrossRef Google scholar
[]
Liu H, He X, Song X, Xu L, Zhang Y, Zhou G, Zhu W, Chang C, Yin Z, Shi Y, Wang C, Chang H. Isolation and molecular and phylogenetic analyses of encephalomyocarditis virus from wild boar in central China Infection, Genetics and Evolution, 2016, 40: 67-72.
CrossRef Google scholar
[]
Liu X, Zhu H, Wang M, Zhang N, Wang J, Tan W, Wu G, Yu P, Liu H, Liu Q. An enterovirus A71 virus-like particle with replaced loops confers partial cross-protection in mice Virus Research, 2023, 337. 199235
CrossRef Google scholar
[]
Luo, Y. K., L. Liang, Q. H. Tang, L. Zhou, L. J. Shi, Y. Y. Cong, W. C. Lin, and S. J. Cui. 2017. Isolation and characterization of encephalomyocarditis virus from dogs in China. Science and Reports 7 (1): 438. https://doi.org/10.1038/s41598-017-00435-x.
[]
Medkour H, Castaneda S, Amona I, Fenollar F, André C, Belais R, Mungongo P, Muyembé-Tamfum JJ, Levasseur A, et al.. Potential zoonotic pathogens hosted by endangered bonobos Science and Reports, 2021, 11(1): 6331.
CrossRef Google scholar
[]
Mohana Subramanian B, Madhanmohan M, Sriraman R, Chandrasekhar Reddy RV, Yuvaraj S, Manikumar K, Rajalakshmi S, Nagendrakumar SB, Rana SK, Srinivasan VA. Development of foot-and-mouth disease virus (FMDV) serotype O virus-like-particles (VLPs) vaccine and evaluation of its potency Antiviral Research, 2012, 96(3): 288-295.
CrossRef Google scholar
[]
Murnane, T.G., Craighead, J.E., Mondragon, H., Shelokov, A., 1960. Fatal disease of swine due to encephalomyocarditis virus. Science (New York, N.Y.) 131 (3399), 498–499. https://doi.org/10.1126/science.131.3399.498.
[]
O’connor, T. W., D. S. Finlaison, L. K. Manning, M. S. Hazelton, Z. B. Spiers, P. Pinczowski, E. M. Bolin, P. D. Kemsley, N. U. Horadagoda, A. J. Dart, et al. 2020. Encephalomyocarditis virus infection in alpacas. Australian Veterinary Journal 98 (10): 486–490. https://doi.org/10.1111/avj.12962.
[]
Palmenberg AC, Kirby EM, Janda MR, Drake NL, Duke GM, Potratz KF, Collett MS. The nucleotide and deduced amino acid sequences of the encephalomyocarditis viral polyprotein coding region Nucleic Acids Research, 1984, 12(6): 2969-2985.
CrossRef Google scholar
[]
Reddacliff LA, Kirkland PD, Hartley WJ, Reece RL. Encephalomyocarditis virus infections in an Australian zoo Journal of Zoo and Wildlife Medicine : Official Publication of the American Association of Zoo Veterinarians, 1997, 28(2): 153-157
[]
Romey, A., Lamglait, B., Blanchard, Y., Touzain, F., Quenault, H., Relmy, A., Zientara, S., Blaise-Boisseau, S., Bakkali-Kassimi, L., 2021. Molecular characterization of encephalomyocarditis virus strains isolated from an African elephant and rats in a French zoo. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc. 33 (2), 313–321. https://doi.org/10.1177/1040638720978389.
[]
Salogni, C., Lazzaro, M., Giacomini, E., Giovannini, S., Zanoni, M., Giuliani, M., Ruggeri, J., Pozzi, P., Pasquali, P., Boniotti, M.B., Alborali, G.L., 2016. Infectious agents identified in aborted swine fetuses in a high-density breeding area: a three-year study. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc. 28 (5), 550–554. https://doi.org/10.1177/1040638716656024.
[]
Shen S, Zhang Y, Yin Z, Zhu Q, Zhang J, Wang T, Fang Y, Wu X, Bai Y, Dai S, Liu X, Jin J, Tang S, Liu J, Wang M, Guo Y, Deng F. Antiviral activity and mechanism of the antifungal drug, anidulafungin, suggesting its potential to promote treatment of viral diseases BMC Medicine, 2022, 20(1): 359.
CrossRef Google scholar
[]
Sherry, L., Grehan, K., Snowden, J.S., Knight, M.L., Adeyemi, O.O., Rowlands, D.J., Stonehouse, N.J., 2020. Comparative molecular biology approaches for the production of poliovirus virus-like particles using pichia pastoris. mSphere 5 (2). https://doi.org/10.1128/mSphere.00838-19.
[]
Tang H, Ke Y, Liao Y, Bian Y, Yuan Y, Wang Z, Yang L, Ma H, Sun T, Zhang B, Zhang X, Wu M, Zhu J. Mutational escape prevention by combination of four neutralizing antibodies that target RBD conserved regions and stem helix Virol Sin, 2022, 37(6): 860-873.
CrossRef Google scholar
[]
Vansteenkiste K, Van Limbergen T, Decaluwé R, Tignon M, Cay B, Maes D. Clinical problems due to encephalomyocarditis virus infections in two pig herds Porcine Health Manag, 2016, 2: 19.
CrossRef Google scholar
[]
Vyshemirskii OI, Agumava AA, Kalaydzyan AA, Leontyuk AV, Kuhn JH, Shchetinin AM, Vishnevskaya TV, Eremyan AA, Alkhovsky SV. Isolation and genetic characterization of encephalomyocarditis virus 1 from a deceased captive hamadryas baboon Virus Research, 2018, 244: 164-172.
CrossRef Google scholar
[]
Wang Z, Zhou C, Gao F, Zhu Q, Jiang Y, Ma X, Hu Y, Shi L, Wang X, Zhang C, Liu B, Shen L, Mao Q, Liu G. Preclinical evaluation of recombinant HFMD vaccine based on enterovirus 71 (EV71) virus-like particles (VLP): Immunogenicity, efficacy and toxicology Vaccine, 2021, 39(31): 4296-4305.
CrossRef Google scholar
[]
Wang R, Zhang C, Zhang Y, Wu J, Zhang Y, Zhang L, Yu R, Liu Y. Synergetic interaction of capsid proteins for virus-like particles assembly of foot-and-mouth disease virus (serotype O) from the inclusion bodies Protein Expression and Purification, 2023, 204. 106231
CrossRef Google scholar
[]
Zhang, Z.D., Xiong, T.C., Yao, S.Q., Wei, M.C., Chen, M., Lin, D., 2020. RNF115 plays dual roles in innate antiviral responses by catalyzing distinct ubiquitination of MAVS and MITA. 11 (1), 5536. https://doi.org/10.1038/s41467-020-19318-3.
[]
Zoll J, Van Kuppeveld FJ, Galama JM, Melchers WJ. Genetic analysis of mengovirus protein 2A: Its function in polyprotein processing and virus reproduction The Journal of General Virology, 1998, 79(Pt 1): 17-25.
CrossRef Google scholar
Funding
National Key Research and Development Program of China(2023YFC2306501); Hubei Provincial Fund for Supporting High-Quality Development of Seed Industry “Conservation and Utilization of Agricultural Germplasm Resources” Project(HBZY2023A001-16)

Accesses

Citations

Detail

Sections
Recommended

/