Analytical insights, modulation and compositional dynamics of the feline gut microbiota: a review
Yuejun Shi, Guiqing Peng, Ashenafi Assefa Gebremariam, Muhammad Muazzam Iqbal, Hakimeh Baghaei Daemi, Muhammad Ali Khan, Rizwan Ullah, Donghan Wang
Analytical insights, modulation and compositional dynamics of the feline gut microbiota: a review
The gastrointestinal tract of felines is inhabited by an active and intricate population of microorganisms whose alteration creates disturbances in the immune response and can affect health and disease states. Studies using various analytical methods have identified peculiar trends in various illnesses, with Firmicutes being the most prevalent phylum, followed by Bacteroidetes, Proteobacteria, and Actinobacteria. However, more Firmicutes and fewer Bacteroidetes have been observed in cats infected with Feline coronavirus. Alterations in the composition of these gut microbiota can be solved by microbiota modification through dietary fiber, probiotics, and fecal microbiota transplantation. Therefore, it is critical to understand the composition of the gut microbiota, the changes in and roles of the gut environment, and the importance of these concepts for overall health while considering the exchange of microbes between humans and domestic animals. This review provides comprehensive information on feline gut microbiota composition, modulation, and analytic methods used for characterizing the gut microbiota.
[1] |
Abecia, L., L. Hoyles, C. Khoo, N.Z. Frantz, and A.L. McCartney. 2010. Effects of a novel galactooligosaccharide on the faecal microbiota of healthy and inflammatory bowel disease cats during a randomized, double-blind, cross-over feeding study. https://api.semanticscholar.org/CorpusID:81591886.
|
[2] |
Ahn, S.Il, S. Cho, E. Jeon, M. Park, B. Chae, I.C.P. Ditengou, et al. 2022. The effect of probiotics on intestinal tight junction protein expression in animal models: A meta‐analysis. Applied Sciences (Switzerland) 12 (9). https://doi.org/10.3390/app12094680.
|
[3] |
|
[4] |
Asadpoor, M., C. Peeters, P.A.J. Henricks, S. Varasteh, R.J. Pieters, G. Folkerts, et al. 2020. Anti-pathogenic functions of non-digestible oligosaccharides In vitro. Nutrients 12 (6). https://doi.org/10.3390/nu12061789.
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
Barry, K.A. 2010. Indices of gut health and intestinal microbial ecology of the cat as affected by ingestion of select carbohydrates varying in fermentative capacity. https://api.semanticscholar.org/CorpusID:82468880.
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
Cervenka, I., L.Z. Agudelo, and J.L. Ruas. 2017. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science (New York, N.Y.) 357 (6349). https://doi.org/10.1126/science.aaf9794.
|
[17] |
|
[18] |
|
[19] |
Chen, M.X., S-Y. Wang, C-H. Kuo, and I-L. Tsai. 2019. Metabolome analysis for investigating host-gut microbiota interactions. Journal of the Formosan Medical Association 118 Suppl (March): S10–22. https://doi.org/10.1016/j.jfma.2018.09.007.
|
[20] |
|
[21] |
|
[22] |
|
[23] |
Deng, P., and K.S. Swanson. 2015. Gut microbiota of humans, dogs and cats: Current knowledge and future opportunities and challenges. The British Journal of Nutrition 113: S6–17. https://doi.org/10.1017/S0007114514002943.
|
[24] |
DePeters, E.J., and L.W. George. 2014. Rumen transfaunation. Immunology Letters 162 (2 Pt A): 69–76. https://doi.org/10.1016/j.imlet.2014.05.009.
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
Eckburg, P.B., E.M. Bik, C.N. Bernstein, E. Purdom, L. Dethlefsen, M. Sargent, et al. 2005. Diversity of the human intestinal microbial flora. Science (New York, N.Y.) 308 (5728): 1635–38. https://doi.org/10.1126/science.1110591.
|
[30] |
Fernández-Alonso, M., A.A. Camorlinga, S.E. Messiah, and E. Marroquin. 2022. Effect of adding probiotics to an antibiotic intervention on the human gut microbial diversity and composition: A systematic review. Journal of Medical Microbiology 71 (11). https://doi.org/10.1099/jmm.0.001625.
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
Garcia-Mazcorro, J.F., J. Chaitman, A. Jergens, F. Gaschen, S. Marks, A. Marroquin-Cardona, et al. 2016. Commentary on key aspects of fecal microbiota transplantation in small animal practice. Veterinary Medicine: Research and Reports 71. https://doi.org/10.2147/vmrr.s105238.
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
Hrncir, T. 2022. Gut microbiota dysbiosis: Triggers, consequences, diagnostic and therapeutic options. Microorganisms 10 (3). https://doi.org/10.3390/microorganisms10030578.
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
Johnston, K.L. 1999. Small intestinal bacterial overgrowth. The Veterinary Clinics of North America. Small Animal Practice 29 (2): 523–50, vii. https://doi.org/10.1016/S0195-5616(99)50033-8.
|
[62] |
|
[63] |
|
[64] |
|
[65] |
Kim, J-A., M.Y. Jung, D-H. Kim, and Y. Kim. 2020. Genome analysis of bacteroides Sp.CACC 737 isolated from feline for its potential application. Journal of Animal Science and Technology 62: 952–55. https://api.semanticscholar.org/CorpusID:229181367.
|
[66] |
Kim, K.T., J.W. Kim, S.I. Kim, S. Kim, T.H. Nguyen, and C.H. Kang. 2021. Antioxidant and anti-inflammatory effect and probiotic properties of lactic acid bacteria isolated from canine and feline feces. Microorganisms 9 (9). https://doi.org/10.3390/microorganisms9091971.
|
[67] |
|
[68] |
Ko, Y.S., D. Tark, S.H. Moon, D.M. Kim, T.G. Lee, D.Y. Bae, et al. 2023. Alteration of the gut microbiota in pigs infected with African swine fever virus. Veterinary Sciences 10 (5). https://doi.org/10.3390/vetsci10050360.
|
[69] |
|
[70] |
|
[71] |
Kwong, T.C., E.C.T. Chau, M.C.H. Mak, C.T. Choy, L.T. Chan, C.K. Pang, et al. 2023. Characterization of the gut microbiome in healthy dogs and dogs with diabetes mellitus. Animals : An Open Access Journal from MDPI 13 (15). https://doi.org/10.3390/ani13152479.
|
[72] |
|
[73] |
|
[74] |
Laterza, L., G. Rizzatti, E. Gaetani, P. Chiusolo, and A. Gasbarrini. 2016. The gut microbiota and immune system rRelationship in human graft-versus-host disease. Mediterranean Journal of Hematology and Infectious Diseases 8 (1). https://doi.org/10.4084/MJHID.2016.025.
|
[75] |
|
[76] |
|
[77] |
Li, Q., É. Larouche-Lebel, K.A. Loughran, T.P. Huh, J.S. Suchodolski, and M.A. Oyama. 2021. Gut dysbiosis and its associations with gut microbiota-derived metabolites in dogs with myxomatous mitral valve disease. MSystems 6 (2). https://doi.org/10.1128/mSystems.00111-21.
|
[78] |
Lyu, Y., C. Su, A. Verbrugghe, T. Van de Wiele, A.M. Martinez-Caja, and M. Hesta. 2020. Past, present, and future of gastrointestinal microbiota research in cats. Frontiers in Microbiology 11 (July). https://doi.org/10.3389/fmicb.2020.01661.
|
[79] |
|
[80] |
|
[81] |
Mandal, R.S., V. Joshi, B. Balamurugan, D. Gautam, G.E. Chethan, and A. Lekshman. 2017. Rumen transfaunation an effective method for treating simple indigestion in ruminants. North‒East Veterinarian 17: 31–33. https://api.semanticscholar.org/CorpusID:196681543.
|
[82] |
|
[83] |
|
[84] |
|
[85] |
Mosca, A., M. Leclerc, and J.P. Hugot. 2016. Gut microbiota diversity and human diseases: Should we reintroduce key predators in our ecosystem? Frontiers in Microbiology 7 (MAR): 1–12. https://doi.org/10.3389/fmicb.2016.00455.
|
[86] |
Moszak, M., M. Szulińska, and P. Bogdański. 2020. You are what you eat-The relationship between diet,microbiota, and metabolic disorders-A review. Nutrients 12 (4). https://doi.org/10.3390/nu12041096.
|
[87] |
|
[88] |
|
[89] |
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
[99] |
|
[100] |
|
[101] |
Roberfroid, M., G.R. Gibson, L. Hoyles, A.L. McCartney, R. Rastall, I. Rowland, et al. 2010. Prebiotic effects: metabolic and health benefits. The British Journal of Nutrition 104 Suppl (August): S1–63. https://doi.org/10.1017/S0007114510003363.
|
[102] |
|
[103] |
Rojas, C.A., Z. Entrolezo, J.K. Jarett, G. Jospin, D.D. Kingsbury, A. Martin, et al. 2023. Microbiome responses tofecal microbiota transplantation in cats with chronic digestive issues. Veterinary Sciences 10 (9). https://doi.org/10.3390/vetsci10090561.
|
[104] |
|
[105] |
|
[106] |
Rudenko, P., Y. Vatnikov, N. Sachivkina, A. Rudenko, E. Kulikov, V. Lutsay, et al. 2021. Search for promising strains of probiotic microbiota isolated from different biotopes of healthy cats for use in the control of surgical infections. Pathogens (Basel, Switzerland) 10 (6). https://doi.org/10.3390/pathogens10060667.
|
[107] |
Sabatino, B.D. 2019. Dietary Management of obesity minimally effects variation of thefeline fecal microbiota’s metabolic function. M.S. Thesis 111.
|
[108] |
|
[109] |
|
[110] |
|
[111] |
|
[112] |
|
[113] |
Setubal, J.C., and E. Dias-Neto. 2022. Microbiomes. In Reference Module in Life Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-822563-9.00081-0.
|
[114] |
Shahi, S.K., K. Zarei, N.V. Guseva, and A.K. Mangalam. 2019. Microbiota analysis using two-step Pcr and next-generation 16 s rRNA gene sequencing. Journal of Visualized Experiments 2019 (152). https://doi.org/10.3791/59980.
|
[115] |
|
[116] |
Singhal, N., M. Kumar, P.K. Kanaujia, and J.S. Virdi. 2015. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Frontiers in Microbiology 6 (AUG): 1–16. https://doi.org/10.3389/fmicb.2015.00791.
|
[117] |
|
[118] |
|
[119] |
|
[120] |
|
[121] |
|
[122] |
|
[123] |
|
[124] |
|
[125] |
|
[126] |
|
[127] |
|
[128] |
Sung, C.H., S. Marsilio, R. Pilla, Y.A. Wu, J.P. Cavasin, M.P. Hong, et al. 2024. Temporal variability of the dominant fecal microbiota in healthy adult cats. Veterinary Sciences 11 (1). https://doi.org/10.3390/vetsci11010031.
|
[129] |
|
[130] |
|
[131] |
Tang, Q., G. Jin, G. Wang, T. Liu, X. Liu, B. Wang, et al. 2020. Current sampling methods for gut microbiota: A call for more precise devices. Frontiers in Cellular and Infection Microbiology 10 (April). https://doi.org/10.3389/fcimb.2020.00151.
|
[132] |
Tannock, G.W. 2005. New perceptions of the gut microbiota: Implications for future research. Gastroenterology Clinics of North America 34 (3): 361–82, vii. https://doi.org/10.1016/j.gtc.2005.05.006.
|
[133] |
|
[134] |
|
[135] |
|
[136] |
Tuniyazi, M., X. Hu, Y. Fu, and N. Zhang. 2022. Canine fecal microbiota Ttransplantation: Current application and possible mechanisms. Veterinary Sciences 9 (8). https://doi.org/10.3390/vetsci9080396.
|
[137] |
|
[138] |
|
[139] |
|
[140] |
|
[141] |
|
[142] |
|
[143] |
|
[144] |
Wiertsema, S.P., J. Bergenhenegouwen, J. Garssen, and L.M.J. Knippels. 2021. The interplay between the gut microbiome and the immune system in the context of infectious diseases throughout life and the role of nutrition in optimizing treatments trategies. Nutrients 13 (3). https://doi.org/10.3390/nu13030886.
|
[145] |
|
[146] |
|
[147] |
Xiong, R-G., J. Li, J. Cheng, D. Zhou, S. Wu, S. Huang, et al. 2023. The role of gut mMicrobiota in anxiety, depression, and other mental disorders as well as the protective effects of dietary components. Nutrients 15 (14). https://doi.org/10.3390/nu15143258.
|
[148] |
|
[149] |
|
[150] |
|
[151] |
|
[152] |
|
[153] |
|
/
〈 | 〉 |