Probiotic potential of lactic acid bacteria isolated from yaks

Yuanyuan He1, Feiran Li1, Mengen Xu1, Chao Jin1, Yu Zhang1, Shah Nawaz1, Muhammad Fakhar-e-Alam Kulyar1, Mudassar Iqbal1, Zhen Qin3, Jiakui Li1,2()()

PDF
Animal Disease ›› 2024, Vol. 4 ›› Issue (1) : 17. DOI: 10.1186/s44149-024-00124-z

Probiotic potential of lactic acid bacteria isolated from yaks

  • Yuanyuan He1, Feiran Li1, Mengen Xu1, Chao Jin1, Yu Zhang1, Shah Nawaz1, Muhammad Fakhar-e-Alam Kulyar1, Mudassar Iqbal1, Zhen Qin3, Jiakui Li1,2()()
Author information +
History +

Abstract

The prevalence of bacterial digestive diseases in plateau animals has caused considerable losses to the Tibetan livestock industry. Therefore, this study aimed to isolate safe lactic acid bacteria (LAB) with beneficial probiotic properties to protect yaks from intestinal diseases. After 16S rDNA matching, four strains of Lactobacillus fermentum(A4), Pediococcus pentosaceus(A3.4 and A1.2), and Pediococcus acidilactici(B1.9) were isolated from the intestinal tissues and content of healthy yaks. The results indicated that A4 was more tolerant to bile salt (0.3%), while A3.4 had better stability in an acidic (pH=3.0) environment. The results of the antibacterial activity test suggested that the isolates inhibited most pathogenic bacteria by up to 20%, except for A3.4, which inhibited Pasteurellaand Staphylococcus aureusby more than 20%. Moreover, the results of the antioxidant test demonstrated that A4 and A3.4 had potent antioxidant activity. In addition, the drug sensitivity test revealed that the isolates were susceptible to commonly used antibiotics. In terms of safety, the isolates promoted growth, enhanced intestinal development, and protected the intestinal barrier without causing any adverse effects. In conclusion, LAB isolated from yak intestinal contents are potential probiotics with excellent antibacterial properties.

Keywords

Lactobacillus / Probiotics / Identification / Yaks / Tibet

Cite this article

Download citation ▾
Yuanyuan He, Feiran Li, Mengen Xu, Chao Jin, Yu Zhang, Shah Nawaz, Muhammad Fakhar-e-Alam Kulyar, Mudassar Iqbal, Zhen Qin, Jiakui Li. Probiotic potential of lactic acid bacteria isolated from yaks. Animal Disease, 2024, 4(1): 17 https://doi.org/10.1186/s44149-024-00124-z

References

[1]
Baran, A., A. Kwiatkowska, and L. Potocki. 2023. Antibiotics and bacterial resistance-A short story of an endless arms race. International Journal of Molecular Sciences 24: 5777. https://doi.org/10.3390/ijms24065777.
[2]
Brüssow, H. 2017. Adjuncts and alternatives in the time of antibiotic resistance and in-feed antibiotic bans. Microbial Biotechnology 10: 674–677. https://doi.org/10.1111/1751-7915.12730.
[3]
Cabello, F.C., and H.P. Godfrey. 2016. Even therapeutic antimicrobial use in animal husbandry may generate environmental hazards to human health. Environmental Microbiology 18: 311–313. https://doi.org/10.1111/1462-2920.13247.
[4]
Chen, Q., B. Kong, Q. Sun, F. Dong, and Q. Liu. 2015a. Antioxidant potential of a unique LAB culture isolated from Harbin dry sausage: In vitro and in a sausage model. Meat Science 110: 180–188. https://doi.org/10.1016/j.meatsci.2015.07.021.
[5]
Chen, X., B. Zhang, H. Yue, Y. Wang, F. Zhou, Q. Zhang, and C. Tang. 2015b. A novel astrovirus species in the gut of yaks with diarrhea in the Qinghai-Tibetan Plateau, 2013. The Journal of General Virology 96: 3672–3680. https://doi.org/10.1099/jgv.0.000303.
[6]
Chung, Y., Y. Ryu, B.C. An, Y.-S. Yoon, O. Choi, T.Y. Kim, J. Yoon, B.C. Ahn, J.H. Park, S.K. Kwon, J.F. Kim, and M.J. Chung. 2021. A synthetic probiotic engineered for colorectal cancer therapy modulates gut microbiota. Microbiome 9: 122. https://doi.org/10.1186/s40168-021-01071-4.
[7]
Danchik, C., and A. Casadevall. 2020. Role of cell surface hydrophobicity in the pathogenesis of medically significant fungi. Frontiers in Cellular and Infection Microbiology 10: 594973. https://doi.org/10.3389/fcimb.2020.594973.
[8]
Deng, Z., K. Hou, J. Zhao, and H. Wang. 2021. The probiotic properties of lactic acid bacteria and their applications in animal husbandry. Current Microbiology 79: 22. https://doi.org/10.1007/s00284-021-02722-3.
[9]
Digu??, C.F., G.D. Ni?oi, F. Matei, G. Lu??, and C.P. Cornea. 2020. The biotechnological potential of Pediococcus spp. isolated from Kombucha Microbial Consortium. Foods 9: 1780. https://doi.org/10.3390/foods9121780.
[10]
Dong, H., B. Liu, A. Li, M. Iqbal, K. Mehmood, T. Jamil, Y.F. Chang, H. Zhang, and Q. Wu. 2020. Microbiome analysis reveals the attenuation effect of Lactobacillus from yaks on diarrhea via modulation of gut microbiota. Frontiers Cellular and Infection Microbiology 10: 610781. https://doi.org/10.3389/fcimb.2020.610781.
[11]
Dong, F., F. Xiao, X. Li, Y. Li, X. Wang, G. Yu, T. Zhang, and Y. Wang. 2022. Pediococcus pentosaceus CECT 8330 protects DSS-induced colitis and regulates the intestinal microbiota and immune responses in mice. Journal of Translational Medicine 20: 33. https://doi.org/10.1186/s12967-022-03235-8.
[12]
Gao, J., M. Liu, X. Meng, Z. Han, D. Zhang, B. Hou, K. Zhang, S. Sizhu, and J. Li. 2013. Seroprevalence of bovine viral diarrhea infection in Yaks (Bos grunniens) on the Qinghai-Tibetan Plateau of China. Tropical Animal Health and Production 45: 791–793. https://doi.org/10.1007/s11250-012-0290-2.
[13]
Goldenberg, J.Z., C. Yap, L. Lytvyn, C.K.-F. Lo, J. Beardsley, D. Mertz, and B. Johnston. 2017. Probiotics for the prevention of Clostridium difficile-associated diarrhea in adults and children. The Cochrane Database of Systematic Reviews 12: CD006095. https://doi.org/10.1002/14651858.CD006095.pub4.
[14]
Gomez, D.E., L.G. Arroyo, M.C. Costa, L. Viel, and J.S. Weese. 2017. Characterization of the fecal bacterial microbiota of healthy and diarrheic dairy calves. Journal of Veterinary Internal Medicine 31: 928–939. https://doi.org/10.1111/jvim.14695.
[15]
Graham, J.P., J.H. Leibler, L.B. Price, J.M. Otte, D.U. Pfeiffer, T. Tiensin, and E.K. Silbergeld. 2008. The animal-human interface and infectious disease in industrial food animal production: Rethinking biosecurity and biocontainment. Public Health Reports 123: 282–299. https://doi.org/10.1177/003335490812300309.
[16]
Grilli, D.J., M.E. Mansilla, M.C. Giménez, N. Sohaefer, M.S. Ruiz, M.R. Terebiznik, M. Sosa, and G.N. Arenas. 2019. Pseudobutyrivibrio xylanivorans adhesion to epithelial cells. Anaerobe 56: 1–7. https://doi.org/10.1016/j.anaerobe.2019.01.001.
[17]
He, Y., F. Li, W. Zhang, M. An, A. Li, Y. Wang, Y. Zhang, M.F. Kulyar, M. Iqbal, and J. Li. 2022. Probiotic potential of Bacillus amyloliquefaciens isolated from Tibetan yaks. Probiotics and Antimicrobial Proteins. https://doi.org/10.1007/s12602-022-10027-5.
[18]
Jankiewicz, M., J. ?ukasik, M. Kotowska, M. Ko?odziej, and H. Szajewska. 2023. Strain-specificity of probiotics in pediatrics: A rapid review of the clinical evidence. Journal of Pediatric Gastroenterology and Nutrition 76: 227–231. https://doi.org/10.1097/MPG.0000000000003675.
[19]
Jiang, S., L. Cai, L. Lv, and L. Li. 2021. Pediococcus pentosaceus, a future additive or probiotic candidate. Microbial Cell Factories 20: 45. https://doi.org/10.1186/s12934-021-01537-y.
[20]
Khan, F., D.T.N. Pham, and Y.M. Kim. 2020. Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Applied Microbiology and Biotechnology 104: 1955–1976. https://doi.org/10.1007/s00253-020-10360-1.
[21]
Kim, S., S.-P. Hong, and S.D. Lim. 2021. Physiological characteristics and anti-diabetic effect of Pediococcus pentosaceus KI62. Food Science of Animal Resources 41: 274–287. https://doi.org/10.5851/kosfa.2020.e99.
[22]
Lara-Villoslada, F., S. Sierra, R. Martín, S. Delgado, J.M. Rodríguez, M. Olivares, and J. Xaus. 2007. Safety assessment of two probiotic strains, Lactobacillus coryniformis CECT5711 and Lactobacillus gasseri CECT5714. Journal of Applied Microbiology 103: 175–184. https://doi.org/10.1111/j.1365-2672.2006.03225.x.
[23]
Leibler, J.H., K. Dalton, A. Pekosz, G.C. Gray, and E.K. Silbergeld. 2017. Epizootics in industrial livestock production: Preventable gaps in biosecurity and biocontainment. Zoonoses and Public Health 64: 137–145. https://doi.org/10.1111/zph.12292.
[24]
Li, H., X. Xie, Y. Li, M. Chen, L. Xue, J. Wang, J.M. Zhang, S. Wu, Q.H. Ye, S.T. Zhang, R.S. Yang, H. Zhao, L. Wu, T.T. Liang, Y. Ding, and Q.P. Wu. 2021. Pediococcus pentosaceus IM96 exerts protective effects against enterohemorrhagic Escherichia coli O157:H7 infection in vivo. Foods 10: 2945. https://doi.org/10.3390/foods10122945.
[25]
Lim, S.M., N.K. Lee, K.T. Kim, and H.D. Paik. 2020. Probiotic Lactobacillus fermentum KU200060 isolated from watery kimchi and its application in probiotic yogurt for oral health. Microbial Pathogenesis 147: 104430. https://doi.org/10.1016/j.micpath.2020.104430.
[26]
Lin, T.H., and T.M. Pan. 2019. Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102. Journal of Microbiology Immunology Infection 52: 409–417. https://doi.org/10.1016/j.jmii.2017.08.003.
[27]
Liu, W.J., Y.F. Chen, L.Y. Kwok, M.H. Li, T. Sun, C.L. Sun, X.N. Wang, T. Dan, H.P. Zhang, and T.S. Sun. 2013. Preliminary selection for potential probiotic Bifidobacterium isolated from subjects of different Chinese ethnic groups and evaluation of their fermentation and storage characteristics in bovine milk. Journal of Dairy Science 96: 6807–6817. https://doi.org/10.3168/jds.2013-6582.
[28]
Low, C.X., L.T.H. Tan, N.S. Ab Mutalib, P. Pusparajah, B.H. Goh, K.G. Chan, V. Letchumanan, and L.H. Lee. 2021. Unveiling the impact of antibiotics and alternative methods for animal husbandry: A review. Antibiotics (Basel) 10: 578. https://doi.org/10.3390/antibiotics10050578.
[29]
Manyi-Loh, C., S. Mamphweli, E. Meyer, and A. Okoh. 2018. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 23: 795. https://doi.org/10.3390/molecules23040795.
[30]
Mohammadi, G., M. Hafezieh, A.A. Karimi, M.N. Azra, H. Van Doan, W. Tapingkae, H. Abdelrahman, and M. Dawood. 2022. The synergistic effects of plant polysaccharide and Pediococcus acidilactici as a synbiotic additive on growth, antioxidant status, immune response, and resistance of Nile tilapia (Oreochromis niloticus) against Aeromonas hydrophila. Fish Shellfish Immunology 120: 304–313. https://doi.org/10.1016/j.fsi.2021.11.028.
[31]
Monteiro, C.R.A.V., M.S. do Carmo, B.O. Melo, M.S. Alves, C.I. Dos Santos, S.G. Monteiro, M.R.Q. Bomfim, E.S. Fernandes, and V.M. Neto. 2019. In vitro antimicrobial activity and probiotic potential of Bifidobacterium and Lactobacillus against species of Clostridium. Nutrients 11: 448. https://doi.org/10.3390/nu11020448.
[32]
Oliver, S.P., S.E. Murinda, and B.M. Jayarao. 2011. Impact of antibiotic use in adult dairy cows on antimicrobial resistance of veterinary and human pathogens: A comprehensive review. Foodborne Pathogens and Disease 8: 337–355. https://doi.org/10.1089/fpd.2010.0730.
[33]
Phillips, I. 2007. Withdrawal of growth-promoting antibiotics in Europe and its effects in relation to human health. International Journal of Antimicrobial Agents 30: 101–107. https://doi.org/10.1016/j.ijantimicag.2007.02.018.
[34]
Pridmore, R.D., A.C. Pittet, F. Praplan, and C. Cavadini. 2008. Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiology Letters 283: 210–215. https://doi.org/10.1111/j.1574-6968.2008.01176.x.
[35]
Qin, S., Z. Huang, Y. Wang, L. Pei, and Y. Shen. 2022. Probiotic potential of Lactobacillus isolated from horses and its therapeutic effect on DSS-induced colitis in mice. Microbial Pathogensis 165: 105216. https://doi.org/10.1016/j.micpath.2021.105216.
[36]
Ren, D., C. Li, Y. Qin, R. Yin, S. Du, F. Ye, C.X. Liu, H.F. Liu, M.P. Wang, Y. Li, Y. Sun, X. Li, M.Y. Tian, and N.Y. Jin. 2014. In vitro evaluation of the probiotic and functional potential of Lactobacillus strains isolated from fermented food and human intestine. Anaerobe 30: 1–10. https://doi.org/10.1016/j.anaerobe.2014.07.004.
[37]
Reuben, R.C., P.C. Roy, S.L. Sarkar, R.-U. Alam, and I.K. Jahid. 2019. Isolation, characterization, and assessment of lactic acid bacteria toward their selection as poultry probiotics. BMC Microbiology 19: 253. https://doi.org/10.1186/s12866-019-1626-0.
[38]
Robinson, T.P., D.P. Bu, J. Carrique-Mas, E.M. Fèvre, M. Gilbert, D. Grace, S.I. Hay, J. Jiwakanon, M. Kakkar, S. Kariuki, et al. 2016. Antibiotic resistance is the quintessential One Health issue. Transaction of the Royal Society of Tropical Medicine and Hygiene 110: 377–380. https://doi.org/10.1093/trstmh/trw048.
[39]
Saboori, B., F. Shahidi, S. Hedayati, and A. Javadmanesh. 2022. Investigating the probiotic properties and antimicrobial activity of lactic acid bacteria isolated from an Iranian fermented dairy product, kashk. Foods 11: 3904. https://doi.org/10.3390/foods11233904.
[40]
Sanders, M.E., L.M.A. Akkermans, D. Haller, C. Hammerman, J. Heimbach, G. H?rmannsperger, G. Huys, D.D. Levy, F. Lutgendorff, D. Mack, et al. 2010. Safety assessment of probiotics for human use. Gut Microbes 1: 164–185. https://doi.org/10.4161/gmic.1.3.12127.
[41]
Sathiyaseelan, A., K. Saravanakumar, K. Han, K.V. Naveen, and M.H. Wang. 2022. Antioxidant and antibacterial effects of potential probiotics isolated from Korean fermented foods. International Journal of Molecular Sciences 23: 10062. https://doi.org/10.3390/ijms231710062.
[42]
Silverman, M.A., L. Konnikova, and J.S. Gerber. 2017. Impact of antibiotics on necrotizing enterocolitis and antibiotic-associated diarrhea. Gastroenterology Clinics of North America 46: 61–76. https://doi.org/10.1016/j.gtc.2016.09.010.
[43]
Slama, T.G., A. Amin, S.A. Brunton, T.M. File, G. Milkovich, K.A. Rodvold, D.F. Sahm, and J.D.W. Varon Jr. 2005. A clinician’s guide to the appropriate and accurate use of antibiotics: The council for appropriate and rational antibiotic therapy (CARAT) criteria. The America Journal of Medicine 118 (Suppl 7A): 1S-6S. https://doi.org/10.1016/j.amjmed.2005.05.007.
[44]
Son, S.H., S.J. Yang, H.L. Jeon, H.S. Yu, N.K. Lee, Y.S. Park, and H.D. Paik. 2018. Antioxidant and immunostimulatory effect of potential probiotic Lactobacillus paraplantarum SC61 isolated from Korean traditional fermented food, jangajji. Microbial Pathogensis 125: 486–492. https://doi.org/10.1016/j.micpath.2018.10.018.
[45]
Talib, N., N.E. Mohamad, S.K. Yeap, Y. Hussin, M.N.M. Aziz, M.J. Masarudin, S.A. Sharifuddin, Y.W. Hui, C.L. Ho, and N.B. Alitheen. 2019. Isolation and characterization of Lactobacillus spp. from kefir samples in Malaysia. Molecules 24: 2606. https://doi.org/10.3390/molecules24142606.
[46]
Wang, Y., Y. Wu, Y. Wang, H. Xu, X. Mei, D. Yu, Y. Wang, and W. Li. 2017. Antioxidant properties of probiotic bacteria. Nutrients 9: 521. https://doi.org/10.3390/nu9050521.
[47]
Wang, L., H. Zhang, M.U. Rehman, K. Mehmood, X. Jiang, M. Iqbal, X.L. Tong, X. Gao, and J.K. Li. 2018. Antibacterial activity of Lactobacillus plantarum isolated from Tibetan yaks. Microbial Pathogensis 115: 293–298. https://doi.org/10.1016/j.micpath.2017.12.077.
[48]
Wang, K., G. Cao, H. Zhang, Q. Li, and C. Yang. 2019. Effects of Clostridium butyricum and Enterococcus faecalis on growth performance, immune function, intestinal morphology, volatile fatty acids, and intestinal flora in a piglet model. Food Function 10: 7844–7854. https://doi.org/10.1039/c9fo01650c.
[49]
Wang, L., Q. Liu, Y. Chen, X. Zheng, C. Wang, Y. Qi, Y.C. Dong, Y. Xiao, C. Chen, T.H. Chen, et al. 2022. Antioxidant potential of Pediococcus pentosaceus strains from the sow milk bacterial collection in weaned piglets. Microbiome 10: 83. https://doi.org/10.1186/s40168-022-01278-z.
[50]
Wehkamp, J., J. Harder, K. Wehkamp, B. Wehkamp-von Meissner, M. Schlee, C. Enders, C. Sonnenborn, S. Nuding, S. Bengmark, K. Fellermann, J.M. Schroder, and E. Stange. 2004. NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: A novel effect of a probiotic bacterium. Infection and Immunity 72: 5750–5758. https://doi.org/10.1128/IAI.72.10.5750-5758.2004.
[51]
Wu, Z., K. Yang, A. Zhang, W. Chang, A. Zheng, Z. Chen, Z. Chen, H. Cai, and G.H. Liu. 2021. Effects of Lactobacillus acidophilus on the growth performance, immune response, and intestinal barrier function of broiler chickens challenged with Escherichia coli O157. Poultry Science 100: 101323. https://doi.org/10.1016/j.psj.2021.101323.
[52]
Xin, J., D. Zeng, H. Wang, N. Sun, Y. Zhao, Y. Dan, K.C. Pan, B. Jing, and X.Q. Ni. 2020. Probiotic Lactobacillus johnsonii BS15 promotes growth performance, intestinal immunity, and gut microbiota in piglets. Probiotics and Antimicrobial Proteins 12: 184–193. https://doi.org/10.1007/s12602-018-9511-y.
[53]
Yadav, S., and R. Jha. 2019. Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology 10: 2. https://doi.org/10.1186/s40104-018-0310-9.
[54]
Yu, J.S., G.S. Youn, J. Choi, C.H. Kim, B.Y. Kim, S.J. Yang, J.H. Lee, T.S. Park, B.K. Kim, S.W. Roh, et al. 2021. Lactobacillus lactis and Pediococcus pentosaceus-driven reprogramming of gut microbiome and metabolome ameliorates the progression of nonalcoholic fatty liver disease. Clinical Translational Medicine 11: e634. https://doi.org/10.1002/ctm2.634.
[55]
Zeng, Z., J. Zhang, Y. Li, K. Li, S. Gong, F. Li, P.P. Wang, M. Iqbal, M.F. Kulyar, and J.K. Li. 2022. Probiotic potential of Bacillus licheniformis and Bacillus pumilus isolated from Tibetan yaks, China. Probiotics and Antimicrobial Proteins 14: 579–594. https://doi.org/10.1007/s12602-022-09939-z.
[56]
Zhong, Y., C. Zheng, J.H. Zheng, and S.C. Xu. 2020. The relationship between intestinal flora changes and osteoporosis in rats with inflammatory bowel disease and the improvement effect of probiotics. European Review for Medical and Pharmacological Sciences 24: 5697–5702. https://doi.org/10.26355/eurrev_202005_21361.
Funding
Key Project of Tibet Autonomous Region(XZ202101ZD0002N-05)
PDF

Accesses

Citations

Detail

Sections
Recommended

/