Current research progress on the viral immune evasion mechanisms of African swine fever

Changjiang Weng1,2()()

PDF
Animal Disease ›› 2024, Vol. 4 ›› Issue (1) : 18. DOI: 10.1186/s44149-024-00123-0

Current research progress on the viral immune evasion mechanisms of African swine fever

  • Changjiang Weng1,2()()
Author information +
History +

Abstract

African swine fever (ASF), caused by the ASF virus (ASFV), is an acute, severe, and highly contagious infectious disease in domestic pigs and wild boars. Domestic pigs infected with a virulent ASFV strain can have morbidity and mortality rates of up to 100%. The epidemic of ASF has caused serious economic losses to the global pig industry. Currently, there is no safe and effective vaccine or specific drug for treating ASF. Therefore, ASFV still poses a great threat to pig factories. ASFV is a double-stranded DNA virus with a complex icosahedral multilayer structure. The ASFV genome contains 150-170 open reading frames (ORFs) that encode 150-200 proteins. Some ASFV-encoded proteins are involved in virus invasion, genome replication, DNA repair, and virion formation. Some ASFV proteins execute immunomodulatory functions by regulating the host antiviral innate immune response. Accumulating studies have shown that the immunomodulatory functions of ASFV genes are closely related to the virulence and pathogenicity of ASFV isolates. This review summarizes the research advances on ASFV immune evasion mechanisms in African swine fever patients and provides new insights for developing attenuated live vaccine candidates to prevent and control ASF.

Keywords

African swine fever / Immunoregulatory gene / Live attenuated vaccines / Antiviral innate immune responses

Cite this article

Download citation ▾
Changjiang Weng. Current research progress on the viral immune evasion mechanisms of African swine fever. Animal Disease, 2024, 4(1): 18 https://doi.org/10.1186/s44149-024-00123-0

References

[1]
Abrams, C.C., L. Goatley, E. Fishbourne, D. Chapman, L. Cooke, C.A. Oura, C.L. Netherton, H.H. Takamatsu, and L.K. Dixon. 2013. Deletion of virulence associated genes from attenuated African swine fever virus isolate OUR T88/3 decreases its ability to protect against challenge with virulent virus. Virology 443 (1): 99–105. https://doi.org/10.1016/j.virol.2013.04.028.
[2]
Afonso, C.L., L. Zsak, C. Carrillo, M.V. Borca, and D.L. Rock. 1998. African swine fever virus NL gene is not required for virus virulence. Journal of General Virology 79 (Pt 10): 2543–2547. https://doi.org/10.1099/0022-1317-79-10-2543.
[3]
Afonso, C.L., M.E. Piccone, K.M. Zaffuto, J. Neilan, G.F. Kutish, Z. Lu, C.A. Balinsky, T.R. Gibb, T.J. Bean, L. Zsak, and D.L. Rock. 2004. African swine fever virus multigene family 360 and 530 genes affect host interferon response. Journal of Virology 78 (4): 1858–1864. https://doi.org/10.1128/jvi.78.4.1858-1864.2004.
[4]
Alcami, A., A. Angulo, and E. Vinuela. 1993. Mapping and sequence of the gene encoding the African swine fever virion protein of M(r) 11500. Journal of General Virology 74 (Pt 11): 2317–2324. https://doi.org/10.1099/0022-1317-74-11-2317.
[5]
Alfonso, P., J.I. Quetglas, J.M. Escribano, and C. Alonso. 2007. Protein pE120R of African swine fever virus is posttranslationally acetylated as revealed by postsource decay MALDI mass spectrometry. Virus Genes 35 (1): 81–85. https://doi.org/10.1007/s11262-006-0015-6.
[6]
Andres, G., R. Garcia-Escudero, E. Vinuela, M.L. Salas, and J.M. Rodriguez. 2001. African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity. Journal of Virology 75 (15): 6758–6768. https://doi.org/10.1128/JVI.75.15.6758-6768.2001.
[7]
Ayanwale, A., S. Trapp, R. Guabiraba, I. Caballero, and F. Roesch. 2022. New Insights in the interplay between African swine fever virus and innate immunity and its impact on viral pathogenicity. Frontiers in Microbiology 13: 958307. https://doi.org/10.3389/fmicb.2022.958307.
[8]
Banjara, S., G.L. Shimmon, L.K. Dixon, C.L. Netherton, M.G. Hinds, and M. Kvansakul. 2019. Crystal structure of African swine fever virus A179L with the autophagy regulator Beclin. Viruses 11 (9): 789. https://doi.org/10.3390/v11090789.
[9]
Barrado-Gil, L., A. Del Puerto, R. Mu?oz-Moreno, I. Galindo, M. Cuesta-Geijo, J. Urquiza, E. Nistal-Villán, C. Maluquer de Motes, and C. Alonso. 2020. African swine fever virus ubiquitin-conjugating enzyme interacts with host translation machinery to regulate the host protein synthesis. Frontiers in Microbiology 11: 622907. https://doi.org/10.3389/fmicb.2020.622907.
[10]
Barrado-Gil, L., A. Del Puerto, I. Galindo, M.A. Cuesta-Geijo, I. Garcia-Dorival, C.M. de Motes, and C. Alonso. 2021. African swine fever virus ubiquitin-conjugating enzyme is an immunomodulator targeting NF-kappaB activation. Viruses 13 (6): 1160. https://doi.org/10.3390/v13061160.
[11]
Borca, M.V., G.F. Kutish, C.L. Afonso, P. Irusta, C. Carrillo, A. Brun, M. Sussman, and D.L. Rock. 1994. An African swine fever virus gene with similarity to the T-lymphocyte surface antigen CD2 mediates hemadsorption. Virology 199 (2): 463–468. https://doi.org/10.1006/viro.1994.1146.
[12]
Borca, M.V., C. Carrillo, L. Zsak, W.W. Laegreid, G.F. Kutish, J.G. Neilan, T.G. Burrage, and D.L. Rock. 1998. Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic swine. Journal of Virology 72 (4): 2881–2889. https://doi.org/10.1128/JVI.72.4.2881-2889.1998.
[13]
Borca, M.V., E. Ramirez-Medina, E. Silva, A. Rai, N. Espinoza, L. Velazquez-Salinas, and D.P. Gladue. 2023. ASF vaccine candidate ASFV-G-?I177L does not exhibit residual virulence in long-term clinical studies. Pathogens 12 (6): 805. https://doi.org/10.3390/pathogens12060805.
[14]
Brun, A., C. Rivas, M. Esteban, J.M. Escribano, and C. Alonso. 1996. African swine fever virus gene A179L, a viral homolog of bcl-2, protects cells from programmed cell death. Virology 225 (1): 227–230. https://doi.org/10.1006/viro.1996.0592.
[15]
Cackett, G., M. Sykora, and F. Werner. 2020. Transcriptome view of a killer: African swine fever virus. Biochemical Society Transactions 48 (4): 1569–1581. https://doi.org/10.1042/BST20191108.
[16]
Chandana, M.S., S.S. Nair, V.K. Chaturvedi, Pal S. Abhishek, M.S.S. Charan, S. Balaji, S. Saini, K. Vasavi, and P. Deepa. 2024. Recent progress and major gaps in the vaccine development for African swine fever. Brazilian Journal of Microbiology 55 (1): 997–1010. https://doi.org/10.1007/s42770-024-01264-7.
[17]
Chaulagain, S., G.A. Delhon, S. Khatiwada, and D.L. Rock. 2021. African swine fever virus CD2v protein induces beta-interferon expression and apoptosis in swine peripheral blood mononuclear cells. Viruses 13 (8): 1480. https://doi.org/10.3390/v13081480.
[18]
Chen, W., D. Zhao, X. He, R. Liu, Z. Wang, X. Zhang, F. Li, D. Shan, H. Chen, J. Zhang, L. Wang, Z. Wen, X. Wang, Y. Guan, J. Liu, and Z. Bu. 2020. A seven-gene-deleted African swine fever virus is safe and effective as a live attenuated vaccine in pigs. Science China Life Science 63 (5): 623–634. https://doi.org/10.1007/s11427-020-1657-9.
[19]
Chen, S., X. Zhang, Y. Nie, H. Li, W. Chen, W. Lin, F. Chen, and Q. Xie. 2021. African swine fever virus protein E199L promotes cell autophagy through the Interaction of PYCR2. Virologica Sinica 36 (2): 196–206. https://doi.org/10.1007/s12250-021-00375-x.
[20]
Chen, Q., X.X. Wang, S.W. Jiang, X.T. Gao, S.Y. Huang, Y. Liang, H. Jia, and H.F. Zhu. 2023. MGF360–12 L of ASFV-SY18 is an immune-evasion protein that inhibits host type I IFN, NF-κB, and JAK/STAT pathways. Polish Journal of Veterinary Sciences 26 (1): 119–130. https://doi.org/10.24425/pjvs.2023.145013.
[21]
Chen, X., J. Zheng, C. Liu, T. Li, X. Wang, X. Li, M. Bao, J. Li, L. Huang, Z. Zhang, Z. Bu, and C. Weng. 2023. CD1d facilitates African swine fever virus entry into the host cells via clathrin-mediated endocytosis. Emerging Microbes & Infections 12 (2): 2220575. https://doi.org/10.1080/22221751.2023.2220575.
[22]
Chen, X., L.F. Li, Z.Y. Yang, M. Li, S. Fan, L.F. Shi, Z.Y. Ren, X.J. Cao, Y. Zhang, S. Han, B. Wan, H.J. Qiu, G. Zhang, and W.R. He. 2023. The African swine fever virus I10L protein inhibits the NF-kappaB signaling pathway by targeting IKKbeta. Journal of Virology 97 (9): e0056923. https://doi.org/10.1128/jvi.00569-23.
[23]
Cheng, M., M.M. Kanyema, Y. Sun, W. Zhao, Y. Lu, J. Wang, X. Li, C. Shi, J. Wang, N. Wang, W. Yang, Y. Jiang, H. Huang, G. Yang, Y. Zeng, C. Wang, and X. Cao. 2023. African swine fever virus L83L negatively regulates the cGAS-STING-mediated IFN-I pathway by recruiting tollip to promote STING autophagic degradation. Journal of Virology 97 (2): e0192322. https://doi.org/10.1128/jvi.01923-22.
[24]
Correia, S., S. Ventura, and R.M. Parkhouse. 2013. Identification and utility of innate immune system evasion mechanisms of ASFV. Virus Research 173 (1): 87–100. https://doi.org/10.1016/j.virusres.2012.10.013.
[25]
Cui, S., Y. Wang, X. Gao, T. Xin, X. Wang, H. Yu, S. Chen, Y. Jiang, Q. Chen, F. Jiang, D. Wang, X. Guo, H. Jia, and H. Zhu. 2022. African swine fever virus M1249L protein antagonizes type I interferon production by suppressing phosphorylation of TBK1 and degrading IRF3. Virus Research 319: 198872. https://doi.org/10.1016/j.virusres.2022.198872.
[26]
de Oliveira, V.L., S.C. Almeida, H.R. Soares, A. Crespo, S. Marshall-Clarke, and R.M. Parkhouse. 2011. A novel TLR3 inhibitor encoded by African swine fever virus (ASFV). Archives of Virology 156 (4): 597–609. https://doi.org/10.1007/s00705-010-0894-7.
[27]
Dixon, L.K., D.A. Chapman, C.L. Netherton, and C. Upton. 2013. African swine fever virus replication and genomics. Virus Research 173 (1): 3–14. https://doi.org/10.1016/j.virusres.2012.10.020.
[28]
Dixon, L.K., P.J. Sanchez-Cordon, I. Galindo, and C. Alonso. 2017. Investigations of pro- and anti-apoptotic factors affecting African swine fever virus replication and pathogenesis. Viruses 9 (9): 241. https://doi.org/10.3390/v9090241.
[29]
Dixon, L.K., M. Islam, R. Nash, and A.L. Reis. 2019. African swine fever virus evasion of host defenses. Virus Research 266: 25–33. https://doi.org/10.1016/j.virusres.2019.04.002.
[30]
Dodantenna, N., L. Ranathunga, W.A.G. Chathuranga, A. Weerawardhana, J.W. Cha, A. Subasinghe, N. Gamage, D.K. Haluwana, Y. Kim, W. Jheong, H. Poo, and J.S. Lee. 2022. African swine fever virus EP364R and C129R target cyclic GMP-AMP to inhibit the cGAS-STING signaling pathway. Journal of Virology 96 (15): e0102222. https://doi.org/10.1128/jvi.01022-22.
[31]
Dodantenna, N., J.W. Cha, K. Chathuranga, W.A.G. Chathuranga, A. Weerawardhana, L. Ranathunga, Y. Kim, W. Jheong, and J.S. Lee. 2024. The African swine fever virus virulence determinant DP96R suppresses type I IFN production targeting IRF3. International Journal of Molecular Sciences 25 (4): 2099. https://doi.org/10.3390/ijms25042099.
[32]
Fan, W., P. Jiao, H. Zhang, T. Chen, X. Zhou, Y. Qi, L. Sun, Y. Shang, H. Zhu, R. Hu, W. Liu, and J. Li. 2020. Inhibition of African swine fever virus replication by porcine type I and type II interferons. Frontiers in Microbiology 11: 1203. https://doi.org/10.3389/fmicb.2020.01203.
[33]
Fraczyk, M., G. Wozniakowski, A. Kowalczyk, L. Bocian, E. Kozak, K. Niemczuk, and Z. Pejsak. 2016. Evolution of African swine fever virus genes related to evasion of host immune response. Veterinary Microbiology 193: 133–144. https://doi.org/10.1016/j.vetmic.2016.08.018.
[34]
Franzoni, G., E. Razzuoli, S. Dei Giudici, T. Carta, G. Galleri, S. Zinellu, M. Ledda, P. Angioi, P. Modesto, S.P. Graham, and A. Oggiano. 2020. Comparison of macrophage responses to African swine fever viruses reveals that the NH/P68 strain is associated with enhanced sensitivity to type I IFN and cytokine responses from classically activated macrophages. Pathogens 9 (3): 209. https://doi.org/10.3390/pathogens9030209.
[35]
Galindo, I., E. Vinuela, and A.L. Carrascosa. 1997. Protein cell receptors mediate the saturable interaction of African swine fever virus attachment protein p12 with the surface of permissive cells. Virus Research 49 (2): 193–204. https://doi.org/10.1016/s0168-1702(97)00037-3.
[36]
Galindo, I., B. Hernaez, G. Diaz-Gil, J.M. Escribano, and C. Alonso. 2008. A179L, a viral Bcl-2 homolog, targets the core Bcl-2 apoptotic machinery and its upstream BH3 activators with selective binding restrictions for Bid and Noxa. Virology 375 (2): 561–572. https://doi.org/10.1016/j.virol.2008.01.050.
[37]
Galindo, I., B. Hernaez, R. Munoz-Moreno, M.A. Cuesta-Geijo, I. Dalmau-Mena, and C. Alonso. 2012. The ATF6 branch of unfolded protein response and apoptosis are activated to promote African swine fever virus infection. Cell Death & Disease 3: e341. https://doi.org/10.1038/cddis.2012.81.
[38]
Gallardo, C., I. Nurmoja, A. Soler, V. Delicado, A. Simón, E. Martin, C. Perez, R. Nieto, and M. Arias. 2018. Evolution in Europe of African swine fever genotype II viruses from highly to moderately virulent. Veterinary Microbiology 219: 70–79. https://doi.org/10.1016/j.vetmic.2018.04.001.
[39]
Gao, Q., Y. Yang, Y. Luo, X. Chen, T. Gong, D. Wu, Y. Feng, X. Zheng, H. Wang, G. Zhang, G. Lu, and L. Gong. 2023. African swine fever virus envelope glycoprotein CD2v interacts with host CSF2RA to regulate the JAK2-STAT3 pathway and inhibit apoptosis to facilitate virus replication. Journal of Virology 97 (4): e0188922. https://doi.org/10.1128/jvi.01889-22.
[40]
Gladue, D.P., E. Ramirez-Medina, E. Vuono, E. Silva, A. Rai, S. Pruitt, N. Espinoza, L. Velazquez-Salinas, and M.V. Borca. 2021. Deletion of the A137R gene from the pandemic strain of African swine fever virus attenuates the strain and offers protection against the virulent pandemic virus. Journal of Virology 95 (21): e0113921. https://doi.org/10.1128/JVI.01139-21.
[41]
Golding, J.P., L. Goatley, S. Goodbourn, L.K. Dixon, G. Taylor, and C.L. Netherton. 2016. Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505. Virology 493: 154–161. https://doi.org/10.1016/j.virol.2016.03.019.
[42]
Gomez-Villamandos, J.C., J. Hervas, A. Mendez, L. Carrasco, J. Martin de las Mulas, C.J. Villeda, P.J. Wilkinson, and M.A. Sierra. 1995. Experimental African swine fever: apoptosis of lymphocytes and virus replication in other cells. Journal of General Virology 76 (Pt 9): 2399–405. https://doi.org/10.1099/0022-1317-76-9-2399.
[43]
Granja, A.G., M.L. Nogal, C. Hurtado, C. Del Aguila, A.L. Carrascosa, M.L. Salas, M. Fresno, and Y. Revilla. 2006. The viral protein A238L inhibits TNF-alpha expression through a CBP/p300 transcriptional coactivators pathway. The Journal of Immunology 176 (1): 451–462. https://doi.org/10.4049/jimmunol.176.1.451.
[44]
Granja, A.G., N.D. Perkins, and Y. Revilla. 2008. A238L inhibits NF-ATc2, NF-kappa B, and c-Jun activation through a novel mechanism involving protein kinase C-theta-mediated upregulation of the amino-terminal transactivation domain of p300. The Journal of Immunology 180 (4): 2429–2442. https://doi.org/10.4049/jimmunol.180.4.2429.
[45]
He, W.R., J. Yuan, Y.H. Ma, C.Y. Zhao, Z.Y. Yang, Y. Zhang, S. Han, B. Wan, and G.P. Zhang. 2022. Modulation of host antiviral innate immunity by African swine fever virus: a review. Animals (basel) 12 (21): 2935. https://doi.org/10.3390/ani12212935.
[46]
Heath, C.M., M. Windsor, and T. Wileman. 2001. Aggresomes resemble sites specialized for virus assembly. Journal of Cell Biology 153 (3): 449–455. https://doi.org/10.1083/jcb.153.3.449.
[47]
Henriques, E.S., R.M. Brito, H. Soares, S. Ventura, V.L. de Oliveira, and R.M. Parkhouse. 2011. Modeling of the Toll-like receptor 3 and a putative Toll-like receptor 3 antagonist encoded by the African swine fever virus. Protein Science 20 (2): 247–255. https://doi.org/10.1002/pro.554.
[48]
Hernaez, B., G. Diaz-Gil, M. Garcia-Gallo, J. Ignacio Quetglas, I. Rodriguez-Crespo, L. Dixon, J.M. Escribano, and C. Alonso. 2004. The African swine fever virus dynein-binding protein p54 induces infected cell apoptosis. FEBS Letters 569 (1–3): 224–228. https://doi.org/10.1016/j.febslet.2004.06.001.
[49]
Hernaez, B., M. Cabezas, R. Munoz-Moreno, I. Galindo, M.A. Cuesta-Geijo, and C. Alonso. 2013. A179L, a new viral Bcl2 homolog targeting Beclin 1 autophagy related protein. Current Molecular Medicine 13 (2): 305–316.
[50]
Hong, J., X. Chi, X. Yuan, F. Wen, K.R. Rai, L. Wu, Z. Song, S. Wang, G. Guo, and J.L. Chen. 2022. I226R protein of African swine fever virus is a suppressor of innate antiviral responses. Viruses 14 (3): 575. https://doi.org/10.3390/v14030575.
[51]
Hu, B., G. Zhong, S. Ding, K. Xu, X. Peng, W. Dong, and J. Zhou. 2023. African swine fever virus protein p17 promotes mitophagy by facilitating the interaction of SQSTM1 with TOMM70. Virulence 14 (1): 2232707. https://doi.org/10.1080/21505594.2023.2232707.
[52]
Huang, L., W. Xu, H. Liu, M. Xue, X. Liu, K. Zhang, L. Hu, J. Li, X. Liu, Z. Xiang, J. Zheng, C. Li, W. Chen, Z. Bu, T. Xiong, and C. Weng. 2021. African Swine fever virus pI215L negatively regulates cGAS-STING signaling pathway through recruiting RNF138 to inhibit K63-Linked Ubiquitination of TBK1. The Journal of Immunology 207 (11): 2754–2769. https://doi.org/10.4049/jimmunol.2100320.
[53]
Huang, L., H. Liu, G. Ye, X. Liu, W. Chen, Z. Wang, D. Zhao, Z. Zhang, C. Feng, L. Hu, H. Yu, S. Zhou, X. Zhang, X. He, J. Zheng, Z. Bu, J. Li, and C. Weng. 2023. Deletion of African Swine Fever Virus (ASFV) H240R gene attenuates the virulence of ASFV by enhancing NLRP3-mediated inflammatory responses. Journal of Virology 97 (2): e0122722. https://doi.org/10.1128/jvi.01227-22.
[54]
Huang, L., W. Chen, H. Liu, M. Xue, S. Dong, X. Liu, C. Feng, S. Cao, G. Ye, Q. Zhou, Z. Zhang, et al. 2023. African swine fever virus HLJ/18 CD2v suppresses type I IFN production and IFN-stimulated genes expression through negatively regulating cGMP-AMP synthase-STING and IFN signaling pathways. The Journal of Immunology 210 (9): 1338–1350. https://doi.org/10.4049/jimmunol.2200813.
[55]
Huang, Z., H. Cao, F. Zeng, S. Lin, J. Chen, Y. Luo, J. You, C. Kong, Z. Mai, J. Deng, W. Guo, X. Chen, H. Wang, P. Zhou, G. Zhang, and L. Gong. 2023. African swine fever virus MGF505-7R interacts with interferon regulatory factor 9 to evade the type I interferon signaling pathway and promote viral replication. Journal of Virology 97 (3): e0197722. https://doi.org/10.1128/jvi.01977-22.
[56]
Hurtado, C., A.G. Granja, M.J. Bustos, M.L. Nogal, G. Gonzalez de Buitrago, V.G. de Yebenes, M.L. Salas, Y. Revilla, and A.L. Carrascosa. 2004. The C-type lectin homolog gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology 326 (1): 160–170. https://doi.org/10.1016/j.virol.2004.05.019.
[57]
Karki, S., M. Moniruzzaman, and F.O. Aylward. 2021. Comparative genomics and environmental distribution of large dsDNA Viruses in the family Asfarviridae. Frontiers in Microbiology 12: 657471. https://doi.org/10.3389/fmicb.2021.657471.
[58]
Lamarche, B.J., A.K. Showalter, and M.D. Tsai. 2005. An error-prone viral DNA ligase. Biochemistry 44 (23): 8408–8417. https://doi.org/10.1021/bi047706g.
[59]
Lamarche, B.J., S. Kumar, and M.D. Tsai. 2006. ASFV DNA polymerse X is extremely error-prone under diverse assay conditions and within multiple DNA sequence contexts. Biochemistry 45 (49): 14826–14833. https://doi.org/10.1021/bi0613325.
[60]
Li, D., J. Zhang, W. Yang, P. Li, Y. Ru, W. Kang, L. Li, Y. Ran, and H. Zheng. 2021. African swine fever virus protein MGF-505-7R promotes virulence and pathogenesis by inhibiting JAK1- and JAK2-mediated signaling. Journal of Biological Chemistry 297 (5): 101190. https://doi.org/10.1016/j.jbc.2021.101190.
[61]
Li, J., J. Song, L. Kang, L. Huang, S. Zhou, L. Hu, J. Zheng, C. Li, X. Zhang, X. He, D. Zhao, Z. Bu, and C. Weng. 2021. pMGF505-7R determines pathogenicity of African swine fever virus infection by inhibiting IL-1beta and type I IFN production. PLoS Pathogens 17 (7): e1009733. https://doi.org/10.1371/journal.ppat.1009733.
[62]
Li, L., J. Fu, J. Li, S. Guo, Q. Chen, Y. Zhang, Z. Liu, C. Tan, H. Chen, and X. Wang. 2022. African swine fever virus pI215L inhibits type I interferon signaling by targeting interferon regulatory factor 9 for autophagic degradation. Journal of Virology 96 (17): e0094422. https://doi.org/10.1128/jvi.00944-22.
[63]
Li, Y., H. Lou, Y. Zhao, W. Fan, P. Jiao, L. Sun, T. Luo, and W. Liu. 2023. The I226R protein of African swine fever virus inhibits the cGAS-STING-mediated innate immune response. Sheng Wu Gong Cheng Xue Bao 39 (12): 4796–4808. https://doi.org/10.13345/j.cjb.230106.
[64]
Li, D., J. Peng, J. Wu , J. Yi , P. Wu, X. Qi, J. Ren, G. Peng, X. Duan, Y. Ru, H. Liu, H. Tian, H. Zheng. 2023. African swine fever virus MGF-360–10 L is a novel and crucial virulence factor that mediates ubiquitination and degradation of JAK1 by recruiting the E3 ubiquitin ligase HERC5. mBio e0060623. https://doi.org/10.1128/mbio.00606-23.
[65]
Liu, X., H. Liu, G. Ye, M. Xue, H. Yu, C. Feng, Q. Zhou, X. Liu, L. Zhang, S. Jiao, et al. 2022. African swine fever virus pE301R negatively regulates cGAS-STING signaling pathway by inhibiting the nuclear translocation of IRF3. Veterinary Microbiology 274: 109556. https://doi.org/10.1016/j.vetmic.2022.109556.
[66]
Liu, Y., Z. Shen, Z. Xie, Y. Song, Y. Li, R. Liang, L. Gong, D. Di, J. Liu, J. Liu, et al. 2023. African swine fever virus I73R is a critical virulence-related gene: A potential target for attenuation. Proceedings of the National Academy of Sciences of the United States of America 120 (15): e2210808120.https://doi.org/10.1073/pnas.2210808120.
[67]
Luo, J., J. Zhang, J. Ni, S. Jiang, N. Xia, Y. Guo, Q. Shao, Q. Cao, W. Zheng, N. Chen, Q. Zhang, H. Chen, Q. Chen, H. Zhu, F. Meurens, and J. Zhu. 2022. The African swine fever virus protease pS273R inhibits DNA sensing cGAS-STING pathway by targeting IKKepsilon. Virulence 13 (1): 740–756. https://doi.org/10.1080/21505594.2022.2065962.
[68]
Maciejewski, M.W., R. Shin, B. Pan, A. Marintchev, A. Denninger, M.A. Mullen, K. Chen, M.R. Gryk, and G.P. Mullen. 2001. Solution structure of a viral DNA repair polymerase. Natural Structural Biology 8 (11): 936–941. https://doi.org/10.1038/nsb1101-936.
[69]
Matamoros, T., A. Alejo, J.M. Rodriguez, B. Hernaez, M. Guerra, A. Fraile-Ramos, and G. Andres. 2020. African swine fever virus protein pE199L mediates virus entry by enabling membrane fusion and core penetration. MBio 11 (4): e00789–20. https://doi.org/10.1128/mBio.00789-20.
[70]
Monteagudo, P.L., A. Lacasta, E. Lopez, L. Bosch, J. Collado, S. Pina-Pedrero, F. Correa-Fiz, F. Accensi, M.J. Navas, E. Vidal, et al. 2017. BA71DeltaCD2: A new recombinant live attenuated African swine fever virus with cross-protective capabilities. Journal of Virology 91 (21): e01058–e1117. https://doi.org/10.1128/JVI.01058-17.
[71]
Munoz-Moreno, R., M.A. Cuesta-Geijo, C. Martinez-Romero, L. Barrado-Gil, I. Galindo, A. Garcia-Sastre, and C. Alonso. 2016. Antiviral role of IFITM proteins in African swine fever virus infection. PLoS One1 11 (4): e0154366. https://doi.org/10.1371/journal.pone.0154366.
[72]
Neilan, J.G., Z. Lu, G.F. Kutish, L. Zsak, T.G. Burrage, M.V. Borca, C. Carrillo, and D.L. Rock. 1997. A BIR motif containing gene of African swine fever virus, 4CL, is nonessential for growth in vitro and viral virulence. Virology 230 (2): 252–264. https://doi.org/10.1006/viro.1997.8481.
[73]
Neilan, J.G., Z. Lu, G.F. Kutish, L. Zsak, T.L. Lewis, and D.L. Rock. 1997. A conserved African swine fever virus IkappaB homolog, 5EL, is nonessential for growth in vitro and virulence in domestic swine. Virology 235 (2): 377–385. https://doi.org/10.1006/viro.1997.8693.
[74]
Neilan, J.G., M.V. Borca, Z. Lu, G.F. Kutish, S.B. Kleiboeker, C. Carrillo, L. Zsak, and D.L. Rock. 1999. An African swine fever virus ORF with similarity to C-type lectins is nonessential for growth in swine macrophages in vitro and for virus virulence in domestic swine. Journal of General Virology 80 (Pt 10): 2693–2697. https://doi.org/10.1099/0022-1317-80-10-2693.
[75]
Neilan, J.G., L. Zsak, Z. Lu, G.F. Kutish, C.L. Afonso, and D.L. Rock. 2002. Novel swine virulence determinant in the left variable region of the African swine fever virus genome. Journal of Virology 76 (7): 3095–3104. https://doi.org/10.1128/jvi.76.7.3095-3104.2002.
[76]
Netherton, C.L., J. Simpson, O. Haller, T.E. Wileman, H.H. Takamatsu, P. Monaghan, and G. Taylor. 2009. Inhibition of a large double-stranded DNA virus by MxA protein. Journal of Virology 83 (5): 2310–2320. https://doi.org/10.1128/JVI.00781-08.
[77]
Nogal, M.L., G. Gonzalez de Buitrago, C. Rodriguez, B. Cubelos, A.L. Carrascosa, M.L. Salas, and Y. Revilla. 2001. African swine fever virus IAP homolog inhibits caspase activation and promotes cell survival in mammalian cells. Journal of Virology 75 (6): 2535–2543. https://doi.org/10.1128/JVI.75.6.2535-2543.2001.
[78]
O’Donnell, V., L.G. Holinka, D.P. Gladue, B. Sanford, P.W. Krug, X. Lu, J. Arzt, B. Reese, C. Carrillo, G.R. Risatti, and M.V. Borca. 2015. African swine fever virus Georgia isolate harboring deletions of MGF360 and MGF505 genes is attenuated in swine and confers protection against challenge with virulent parental virus. Journal of Virology 89 (11): 6048–6056. https://doi.org/10.1128/JVI.00554-15.
[79]
O’Donnell, V., G.R. Risatti, L.G. Holinka, P.W. Krug, J. Carlson, L. Velazquez-Salinas, P.A. Azzinaro, D.P. Gladue, and M.V. Borca. 2017. Simultaneous deletion of the 9GL and UK genes from the African swine fever virus Georgia 2007 isolate offers increased safety and protection against homologous challenge. Journal of Virology 91 (1): e01760–e1816. https://doi.org/10.1128/JVI.01760-16.
[80]
Pan, I.C., T.C. Whyard, W.R. Hess, N. Yuasa, and M. Shimizu. 1988. Epitopic diversity of African swine fever virus. Virus Research 9 (2–3): 93–106. https://doi.org/10.1016/0168-1702(88)90025-1.
[81]
Perez-Nunez, D., S.Y. Sunwoo, E.G. Sanchez, N. Haley, R. Garcia-Belmonte, M. Nogal, I. Morozov, D. Madden, N.N. Gaudreault, L. Mur, V. Shivanna, J.A. Richt, and Y. Revilla. 2019. Evaluation of a viral DNA–protein immunization strategy against African swine fever in domestic pigs. Veterinary Immunology and Immunopathology 208: 34–43. https://doi.org/10.1016/j.vetimm.2018.11.018.
[82]
Portugal, R., A. Leitao, and C. Martins. 2018. Modulation of type I interferon signaling by African swine fever virus (ASFV) of different virulence L60 and NHV in macrophage host cells. Veterinary Microbiology 216: 132–141. https://doi.org/10.1016/j.vetmic.2018.02.008.
[83]
Qi, X., T. Feng, Z. Ma, L. Zheng, H. Liu, Z. Shi, C. Shen, P. Li, P. Wu, Y. Ru, D. Li, Z. Zhu, H. Tian, S. Wu, and H. Zheng. 2023. Deletion of DP148R, DP71L, and DP96R attenuates African swine fever virus, and the mutant strain confers complete protection against homologous challenges in pigs. Journal of Virology 97 (4): e0024723. https://doi.org/10.1128/jvi.00247-23.
[84]
Quarleri, J., C. Cevallos, and M.V. Delpino. 2021. Apoptosis in infectious diseases as a mechanism of immune evasion and survival. Advances in Protein Chemistry and Structural Biology 125: 1–24. https://doi.org/10.1016/bs.apcsb.2021.01.001.
[85]
Ramirez-Medina, E., A. Rai, N. Espinoza, A. Valladares, E. Silva, L. Velazquez-Salinas, M.V. Borca, and D.P. Gladue. 2023. Deletion of the H240R gene in African swine fever virus partially reduces virus virulence in swine. Viruses 15 (7): 1477. https://doi.org/10.3390/v15071477.
[86]
Ramiro-Ibanez, F., A. Ortega, A. Brun, J.M. Escribano, and C. Alonso. 1996. Apoptosis: A mechanism of cell killing and lymphoid organ impairment during acute African swine fever virus infection. Journal of General Virology 77 (Pt 9): 2209–2219. https://doi.org/10.1099/0022-1317-77-9-2209.
[87]
Ran, Y., D. Li, M.G. Xiong, H.N. Liu, T. Feng, Z.W. Shi, Y.H. Li, H.N. Wu, S.Y. Wang, H.X. Zheng, and Y.Y. Wang. 2022. African swine fever virus I267L acts as an important virulence factor by inhibiting RNA polymerase III-RIG-I-mediated innate immunity. PLoS Pathogens 18 (1): e1010270. https://doi.org/10.1371/journal.ppat.1010270.
[88]
Rathakrishnan, A., A.L. Reis, L.C. Goatley, K. Moffat, and L.K. Dixon. 2021. Deletion of the K145R and DP148R genes from the virulent ASFV Georgia 2007/1 isolate delays the onset, but does not reduce severity, of clinical signs in infected pigs. Viruses 13 (8): 1473. https://doi.org/10.3390/v13081473.
[89]
Rathakrishnan, A., S. Connell, V. Petrovan, K. Moffat, L.C. Goatley, T. Jabbar, P.J. Sanchez-Cordon, A.L. Reis, and L.K. Dixon. 2022. Differential effect of deleting members of African swine fever virus multigene families 360 and 505 from the genotype II Georgia 2007/1 isolate on virus replication, virulence, and induction of protection. Journal of Virology 96 (6): e0189921. https://doi.org/10.1128/jvi.01899-21.
[90]
Razzuoli, E., G. Franzoni, T. Carta, S. Zinellu, M. Amadori, P. Modesto, and A. Oggiano. 2020. Modulation of type I interferon system by African swine fever virus. Pathogens 9 (5): 361. https://doi.org/10.3390/pathogens9050361.
[91]
Redrejo-Rodriguez, M., J.M. Rodriguez, C. Suarez, J. Salas, and M.L. Salas. 2013. Involvement of the reparative DNA polymerase Pol X of African swine fever virus in the maintenance of viral genome stability in vivo. Journal of Virology 87 (17): 9780–9787. https://doi.org/10.1128/JVI.01173-13.
[92]
Reis, A.L., C.C. Abrams, L.C. Goatley, C. Netherton, D.G. Chapman, P. Sanchez-Cordon, and L.K. Dixon. 2016. Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine 34 (39): 4698–4705. https://doi.org/10.1016/j.vaccine.2016.08.011.
[93]
Reis, A.L., L.C. Goatley, T. Jabbar, P.J. Sanchez-Cordon, C.L. Netherton, D.A.G. Chapman, and L.K. Dixon. 2017. Deletion of the African swine fever virus gene DP148R does not reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge. Journal of Virology 91 (24): e01428–e1517. https://doi.org/10.1128/JVI.01428-17.
[94]
Revilla, Y., A. Cebrian, E. Baixeras, C. Martinez, E. Vinuela, and M.L. Salas. 1997. Inhibition of apoptosis by the African swine fever virus Bcl-2 homolog: Role of the BH1 domain. Virology 228 (2): 400–404. https://doi.org/10.1006/viro.1996.8395.
[95]
Riera, E., D. Perez-Nunez, R. Garcia-Belmonte, L. Miorin, A. Garcia-Sastre, and Y. Revilla. 2021. African swine fever virus induces STAT1 and STAT2 degradation to counteract IFN-I signaling. Frontiers in Microbiology 12: 722952. https://doi.org/10.3389/fmicb.2021.722952.
[96]
Riera, E., R. García-Belmonte, R. Madrid, D. Pérez-Nú?ez, and Y. Revilla. 2022. African swine fever virus ubiquitin-conjugating enzyme pI215L inhibits IFN-I signaling pathway through STAT2 degradation. Frontiers in Microbiology 13: 1081035. https://doi.org/10.3389/fmicb.2022.1081035.
[97]
Rivera, J., C. Abrams, B. Hernaez, A. Alcazar, J.M. Escribano, L. Dixon, and C. Alonso. 2007. The MyD116 African swine fever virus homolog interacts with the catalytic subunit of protein phosphatase 1 and activates its phosphatase activity. Journal of Virology 81 (6): 2923–2929. https://doi.org/10.1128/JVI.02077-06.
[98]
Rodriguez, J.M., and M.L. Salas. 2013. African swine fever virus transcription. Virus Research 173 (1): 15–28. https://doi.org/10.1016/j.virusres.2012.09.014.
[99]
Rodriguez, C.I., M.L. Nogal, A.L. Carrascosa, M.L. Salas, M. Fresno, and Y. Revilla. 2002. African swine fever virus IAP-like protein induces the activation of nuclear factor kappa B. Journal of Virology 76 (8): 3936–3942. https://doi.org/10.1128/jvi.76.8.3936-3942.2002.
[100]
Sampoli Benitez, B.A., K. Arora, L. Balistreri, and T. Schlick. 2008. Mismatched base-pair simulations for ASFV Pol X/DNA complexes help interpret frequent G*G misincorporation. Journal of Molecular Biology 384 (5): 1086–1097. https://doi.org/10.1016/j.jmb.2008.10.025.
[101]
Schafer, A., G. Franzoni, C.L. Netherton, L. Hartmann, S. Blome, and U. Blohm. 2022. Adaptive cellular immunity against African swine fever virus infections. Pathogens 11 (2): 274. https://doi.org/10.3390/pathogens11020274.
[102]
Silk, R.N., G.C. Bowick, C.C. Abrams, and L.K. Dixon. 2007. African swine fever virus A238L inhibitor of NF-kappaB and of calcineurin phosphatase is imported actively into the nucleus and exported by a CRM1-mediated pathway. Journal of General Virology 88 (Pt 2): 411–419. https://doi.org/10.1099/vir.0.82358-0.
[103]
Simoes, M., F.B. Freitas, A. Leitao, C. Martins, and F. Ferreira. 2019. African swine fever virus replication events and cell nucleus: New insights and perspectives. Virus Research 270: 197667. https://doi.org/10.1016/j.virusres.2019.197667.
[104]
Sun, E., Z. Zhang, Z. Wang, X. He, X. Zhang, L. Wang, W. Wang, L. Huang, F. Xi, H. Huangfu, et al. 2021. Emergence and prevalence of naturally occurring lower virulent African swine fever viruses in domestic pigs in China in 2020. Science China Life Science 64 (5): 752–765. https://doi.org/10.1007/s11427-021-1904-4.
[105]
Sun, M., S. Yu, H. Ge, T. Wang, Y. Li, P. Zhou, L. Pan, Y. Han, Y. Yang, Y. Sun, S. Li, L.F. Li, and H.J. Qiu. 2022. The A137R protein of African swine fever virus inhibits type I interferon production via the autophagy-mediated lysosomal degradation of TBK1. Journal of Virology 96 (9): e0195721. https://doi.org/10.1128/jvi.01957-21.
[106]
Sun, L., Y. Miao, Z. Wang, H. Chen, P. Dong, H. Zhang, L. Wu, M. Jiang, L. Chen, W. Yang, et al. 2022. Structural insight into African swine fever virus I73R protein reveals it as a Z-DNA binding protein. Transboundary and Emerging Diseases 69 (5): e1923–e1935. https://doi.org/10.1111/tbed.14527.
[107]
Tran, X.H., T.T.P. Le, Q.H. Nguyen, T.T. Do, V.D. Nguyen, C.G. Gay, M.V. Borca, and D.P. Gladue. 2022. African swine fever virus vaccine candidate ASFV-G-DeltaI177L efficiently protects European and native pig breeds against circulating Vietnamese field strain. Transboundary and Emerging Diseases 69 (4): e497–e504. https://doi.org/10.1111/tbed.14329.
[108]
Tran, X.H., L.T.T. Phuong, N.Q. Huy, D.T. Thuy, V.D. Nguyen, P.H. Quang, Q.V. Ngon, A. Rai, C.G. Gay, D.P. Gladue, and M.V. Borca. 2022. Evaluation of the safety profile of the ASFV vaccine candidate ASFV-G-DeltaI177L. Viruses 14 (5): 896. https://doi.org/10.3390/v14050896.
[109]
Tulman, E.R., G.A. Delhon, B.K. Ku, and D.L. Rock. 2009. African swine fever virus. Current Topics in Microbiology and Immunology 328: 43–87. https://doi.org/10.1007/978-3-540-68618-7_2.
[110]
Urbano, A.C., and F. Ferreira. 2020. Role of the DNA-binding protein pA104R in ASFV genome packaging and as a novel target for vaccine and drug development. Vaccines (basel) 8 (4): 585. https://doi.org/10.3390/vaccines8040585.
[111]
Vallee, I., S.W. Tait, and Powell pp. 2001. African swine fever virus infection of porcine aortic endothelial cells leads to inhibition of inflammatory responses, activation of the thrombotic state, and apoptosis. Journal of Virology 75 (21): 10372–10382. https://doi.org/10.1128/JVI.75.21.10372-10382.2001.
[112]
Walczak, M., J. Zmudzki, N. Mazur-Panasiuk, M. Juszkiewicz, and G. Wozniakowski. 2020. Analysis of the clinical course of experimental infection with highly pathogenic African swine fever strain, isolated from an outbreak in Poland. Aspects related to the disease suspicion at the farm level. Pathogens 9 (3): 237. https://doi.org/10.3390/pathogens9030237.
[113]
Wang, J., R. Kang, H. Huang, X. Xi, B. Wang, J. Wang, and Z. Zhao. 2014. Hepatitis C virus core protein activates autophagy through EIF2AK3 and ATF6 UPR pathway-mediated MAP1LC3B and ATG12 expression. Autophagy 10 (5): 766–784. https://doi.org/10.4161/auto.27954.
[114]
Wang, X., J. Wu, Y. Wu, H. Chen, S. Zhang, J. Li, T. Xin, H. Jia, S. Hou, Y. Jiang, H. Zhu, and X. Guo. 2018. Inhibition of cGAS-STING-TBK1 signaling pathway by DP96R of ASFV China 2018/1. Biochemical and Biophysical Research Communications 506 (3): 437–443. https://doi.org/10.1016/j.bbrc.2018.10.103.
[115]
Wang, N., D. Zhao, J. Wang, Y. Zhang, M. Wang, Y. Gao, F. Li, J. Wang, Z. Bu, Z. Rao, and X. Wang. 2019. Architecture of African swine fever virus and implications for viral assembly. Science 366 (6465): 640–644. https://doi.org/10.1126/science.aaz1439.
[116]
Wang, Y., S. Cui, T. Xin, X. Wang, H. Yu, S. Chen, Y. Jiang, X. Gao, Y. Jiang, X. Guo, H. Jia, and H. Zhu. 2021. African swine fever virus MGF360-14 L negatively regulates type I interferon signaling by targeting IRF3. Frontiers in Cellular and Infection Microbiology 11: 818969. https://doi.org/10.3389/fcimb.2021.818969.
[117]
Wang, T., R. Luo, J. Zhang, Z. Lu, L.F. Li, Y.H. Zheng, L. Pan, J. Lan, H. Zhai, S. Huang, Y. Sun, and H.J. Qiu. 2023. The MGF300-2R protein of African swine fever virus is associated with viral pathogenicity by promoting the autophagic degradation of IKKalpha and IKKbeta through the recruitment of TOLLIP. PLoS Pathogens 19 (8): e1011580. https://doi.org/10.1371/journal.ppat.1011580.
[118]
Yang, J., S. Li, T. Feng, X. Zhang, F. Yang, W. Cao, H. Chen, H. Liu, K. Zhang, Z. Zhu, and H. Zheng. 2021. African swine fever virus F317L protein inhibits NF-kappaB activation to evade host immune response and promote viral replication. mSphere 6 (5): e0065821. https://doi.org/10.1128/mSphere.00658-21.
[119]
Yang, K., Y. Xue, T. Niu, X. Li, M. Cheng, M. Bao, B. Zou, C. Shi, J. Wang, W. Yang, N. Wang, Y. Jiang, G. Yang, Y. Zeng, X. Cao, and C. Wang. 2022. African swine fever virus MGF505-7R protein interacted with IRF7and TBK1 to inhibit type I interferon production. Virus Research 322: 198931. https://doi.org/10.1016/j.virusres.2022.198931.
[120]
Ye, G., H. Liu, X. Liu, W. Chen, J. Li, D. Zhao, G. Wang, C. Feng, Z. Zhang, Q. Zhou, J. Zheng, Z. Bu, C. Weng, and L. Huang. 2023. African Swine fever virus H240R protein inhibits the production of type I interferon through disrupting the oligomerization of STING. Journal of Virology 97 (9): e0057723. https://doi.org/10.1128/jvi.00577-23.
[121]
Ye, G., Z. Zhang, X. Liu, H. Liu, W. Chen, C. Feng, J. Li, Q. Zhou, D. Zhao, S. Zhang, H. Chen, Z. Bu, L. Huang, and C. Weng. 2024. African swine fever virus pH 240R enhances viral replication via inhibition of the type I IFN signaling pathway. Journal of Virology 97 (9): e0183423. https://doi.org/10.1128/jvi.01834-23.
[122]
Zhang, F., A. Moon, K. Childs, S. Goodbourn, and L.K. Dixon. 2010. The African swine fever virus DP71L protein recruits the protein phosphatase 1 catalytic subunit to dephosphorylate eIF2alpha and inhibits CHOP induction but is dispensable for these activities during virus infection. Journal of Virology 84 (20): 10681–10689. https://doi.org/10.1128/JVI.01027-10.
[123]
Zhang, Y., J. Ke, J. Zhang, H. Yue, T. Chen, Q. Li, X. Zhou, Y. Qi, R. Zhu, S. Wang, et al. 2021. I267L is neither the virulence-nor the replication-related gene of African swine fever virus and its deletant is an ideal fluorescent-tagged virulence strain. Viruses 14 (1): 53. https://doi.org/10.3390/v14010053.
[124]
Zhang, Y., J. Ke, J. Zhang, J. Yang, H. Yue, X. Zhou, Y. Qi, R. Zhu, F. Miao, Q. Li, F. Zhang, Y. Wang, X. Han, L. Mi, J. Yang, S. Zhang, T. Chen, and R. Hu. 2021. African swine fever virus bearing an I226R gene deletion elicits robust immunity in pigs to African swine fever. Journal of Virology 95 (23): e0119921. https://doi.org/10.1128/JVI.01199-21.
[125]
Zhang, K., B. Yang, C. Shen, T. Zhang, Y. Hao, D. Zhang, H. Liu, X. Shi, G. Li, J. Yang, et al. 2022. MGF360–9 L is a major virulence factor associated with the African swine fever virus by antagonizing the JAK/STAT signaling pathway. MBio 13 (1): e0233021. https://doi.org/10.1128/mbio.02330-21.
[126]
Zhao, D., R. Liu, X. Zhang, F. Li, J. Wang, J. Zhang, X. Liu, L. Wang, J. Zhang, X. Wu, Y. Guan, W. Chen, X. Wang, X. He, and Z. Bu. 2019. Replication and virulence in pigs of the first African swine fever virus isolated in China. Emergency Microbes Infection 8 (1): 438–447. https://doi.org/10.1080/22221751.2019.1590128.
[127]
Zhao, G., T. Li, X. Liu, T. Zhang, Z. Zhang, L. Kang, J. Song, S. Zhou, X. Chen, X. Wang, J. Li, L. Huang, C. Li, Z. Bu, J. Zheng, and C. Weng. 2022. African swine fever virus cysteine protease pS273R inhibits pyroptosis by noncanonically cleaving gasdermin D. Journal of Biological Chemistry 298 (1): 101480. https://doi.org/10.1016/j.jbc.2021.101480.
[128]
Zhou, X.C., S.H. Dong, Z.S. Liu, S. Liu, C.C. Zhang, and X.Z. Liang. 2018. Regulation of gammaherpesvirus lytic replication by endoplasmic reticulum stress-induced transcription factors ATF4 and CHOP. Journal of Biological Chemistry 293 (8): 2801–2814. https://doi.org/10.1074/jbc.M117.813675.
[129]
Zhou, P., L.F. Li, K. Zhang, B. Wang, L. Tang, M. Li, T. Wang, Y. Sun, S. Li, and H.J. Qiu. 2022. Deletion of the H240R gene of African swine fever virus decreases infectious progeny virus production due to aberrant virion morphogenesis and enhances inflammatory cytokine expression in porcine macrophages. Journal of Virology 96 (3): e0166721. https://doi.org/10.1128/JVI.01667-21.
[130]
Zhou, P., J. Dai, K. Zhang, T. Wang, L.F. Li, Y. Luo, Y. Sun, H.J. Qiu, and S. Li. 2022. The H240R protein of African swine fever virus inhibits interleukin 1β production by inhibiting NEMO expression and NLRP3 oligomerization. Journal of Virology 96 (22). https://doi.org/10.1128/jvi.00954-22.
[131]
Zhu, Z., S. Li, C. Ma, F. Yang, W. Cao, H. Liu, X. Chen, T. Feng, Z. Shi, H. Tian, K. Zhang, H. Chen, X. Liu, and H. Zheng. 2023. African swine fever virus E184L protein interacts with innate immune adaptor STING to block IFN production for viral replication and pathogenesis. The Journal of Immunology 210 (4): 442–458. https://doi.org/10.4049/jimmunol.2200357.
[132]
Zhu, G., J. Ren, D. Li, Y. Ru, X. Qin, T. Feng, H. Tian, B. Lu, D. Shi, Z. Shi, W. Yang, and H. Zheng. 2023. Combinational deletions of MGF110-9 L and MGF505-7R genes from the African swine fever virus inhibit TBK1 degradation by an autophagy activator PIK3C2B To promote type I interferon production. Journal of Virology 97 (5): e0022823. https://doi.org/10.1128/jvi.00228-23.
[133]
Zhuo, Y., Z. Guo, T. Ba, C. Zhang, L. He, C. Zeng, and H. Dai. 2021. African Swine Fever Virus MGF360-12 L inhibits type I interferon production by blocking the interaction of importin alpha and NF-kappaB signaling pathway. Virologica Sinica 36 (2): 176–186. https://doi.org/10.1007/s12250-020-00304-4.
[134]
Zsak, L., Z. Lu, G.F. Kutish, J.G. Neilan, and D.L. Rock. 1996. An African swine fever virus virulence-associated gene NL-S with similarity to the herpes simplex virus ICP34.5 gene. Journal of Virology 70 (12): 8865–71. https://doi.org/10.1128/JVI.70.12.8865-8871.1996.
[135]
Zsak, L., Z. Lu, T.G. Burrage, J.G. Neilan, G.F. Kutish, D.M. Moore, and D.L. Rock. 2001. African swine fever virus multigene family 360 and 530 genes are novel macrophage host range determinants. Journal of Virology 75 (7): 3066–3076. https://doi.org/10.1128/JVI.75.7.3066-3076.2001.
Funding
Key Technologies Research and Development Program(2021YFD1800100); National Natural Science Foundation of China(31941002)
PDF

Accesses

Citations

Detail

Sections
Recommended

/