The phosphoethanolamine transferase PetL of Pasteurella multocidais associated with colistin resistance

Jie Yang1,2,3, Lin Lin1,2,3, Haixin Bi1,2,3, Congcong Shi1,2,3, Qingjie Lv1,2,3, Lin Hua1,2,3, Huanchun Chen1,2,3, Bin Wu1,2(), Zhong Peng1,2,3()()

PDF
Animal Disease ›› 2024, Vol. 4 ›› Issue (1) : 10. DOI: 10.1186/s44149-024-00115-0

The phosphoethanolamine transferase PetL of Pasteurella multocidais associated with colistin resistance

  • Jie Yang1,2,3, Lin Lin1,2,3, Haixin Bi1,2,3, Congcong Shi1,2,3, Qingjie Lv1,2,3, Lin Hua1,2,3, Huanchun Chen1,2,3, Bin Wu1,2(), Zhong Peng1,2,3()()
Author information +
History +

Abstract

The rapid emergence and spread of colistin-resistant gram-negative bacteria has raised worldwide public health concerns, and phosphoethanolamine (PEtn) transferase modification-mediated colistin resistance has been widely documented in multiple gram-negative bacterial species. However, whether such a mechanism exists in the zoonotic pathogen Pasteurella multocidais still unknown. Recently, a novel PEtn transferase, PetL, was identified in P. multocida, but whether it is associated with colistin resistance remains to be elucidated. In this study, we found that PetL in P. multocida(PetLPM) exhibited structural characteristics similar to those of the mobile-colistin-resistant (MCR) protein and the PEtn transferase characterized in Neisseria meningitidis.The transformation of petLPM into E. colior K. pneumoniaechanged the phenotype of several tested strains from colistin sensitive to colistin resistant. Deletion of this gene decreased the colistin minimum inhibitory concentration (MIC) of P. multocida by 64-fold. Our extensive analysis by MALDI-TOF-MS demonstrated that PetLPM participated in the modification of bacterial lipopolysaccharide (LPS)-lipid A. Deletion of petLPM led to an increase in membrane charge but a decrease in cell-surface hydrophobicity and cell permeability in P. multocida. The present study is the first to report the presence of PEtn transferase-mediated colistin resistance in the zoonotic pathogen P. multocida.

Keywords

Antimicrobial resistance / Colistin / Pasteurella multocida / Phosphoethanolamine transferase / Lipid A modification

Cite this article

Download citation ▾
Jie Yang, Lin Lin, Haixin Bi, Congcong Shi, Qingjie Lv, Lin Hua, Huanchun Chen, Bin Wu, Zhong Peng. The phosphoethanolamine transferase PetL of Pasteurella multocidais associated with colistin resistance. Animal Disease, 2024, 4(1): 10 https://doi.org/10.1186/s44149-024-00115-0

References

[1]
Anandan, A., G.L. Evans, K. Condic-Jurkic, M.L. O’Mara, C.M. John, N.J. Phillips, G.A. Jarvis, S.S. Wills, K.A. Stubbs, I. Moraes, et al. 2017. Structure of a lipid A phosphoethanolamine transferase suggests how conformational changes govern substrate binding. Proc Natl Acad Sci U S A 114: 2218–2223. https://doi.org/10.1073/pnas.1612927114.
[2]
CLSI. 2018. Performance standards for antimicrobial susceptibility testing. M100, 28th Edition.
[3]
El-Demerdash, A.S., R.E. Mowafy, H.A. Fahmy, A.A. Matter, and M. Samir. 2023. Pathognomonic features of Pasteurella multocida isolates among various avian species in Sharkia Governorate, Egypt. World J Microbiol Biotechnol 39: 335. https://doi.org/10.1007/s11274-023-03774-2.
[4]
Fu, L., C. Xie, Z. Jin, Z. Tu, L. Han, M. Jin, Y. Xiang, and A. Zhang. 2019. The prokaryotic Argonaute proteins enhance homology sequence-directed recombination in bacteria. Nucleic Acids Research 47: 3568–3579. https://doi.org/10.1093/nar/gkz040.
[5]
Harper, M., and J.D. Boyce. 2017. The myriad properties of Pasteurella multocida lipopolysaccharide. Toxins (Basel) 9: 254. https://doi.org/10.3390/toxins9080254.
[6]
Harper, M., A.D. Cox, B. Adler, and J.D. Boyce. 2011. Pasteurella multocida lipopolysaccharide: The long and the short of it. Veterinary Microbiology 153: 109–115. https://doi.org/10.1016/j.vetmic.2011.05.022.
[7]
Harper, M., A. Wright, F. St Michael, J. Li, D. Deveson Lucas, M. Ford, B. Adler, A.D. Cox, and J.D. Boyce. 2017. Characterization of two novel lipopolysaccharide phosphoethanolamine transferases in Pasteurella multocida and their role in resistance to cathelicidin-2. Infection and Immunity 85: 10–128. https://doi.org/10.1128/iai.00557-17.
[8]
Huang, J., Y. Zhu, M.L. Han, M. Li, J. Song, T. Velkov, C. Li, and J. Li. 2018. Comparative analysis of phosphoethanolamine transferases involved in polymyxin resistance across 10 clinically relevant gram-negative bacteria. International Journal of Antimicrobial Agents 51: 586–593. https://doi.org/10.1016/j.ijantimicag.2017.12.016.
[9]
Jangir, P.K., Q. Yang, L.P. Shaw, J.D. Caballero, L. Ogunlana, R. Wheatley, T. Walsh, and R.C. MacLean. 2022. Preexisting chromosomal polymorphisms in pathogenic E. coli potentiate the evolution of resistance to a last-resort antibiotic. Elife 11: e78834. https://doi.org/10.7554/elife.78834.
[10]
Kempf, I., E. Jouy, and C. Chauvin. 2016. Colistin use and colistin resistance in bacteria from animals. International Journal of Antimicrobial Agents 48: 598–606. https://doi.org/10.1016/j.ijantimicag.2016.09.016.
[11]
Li, X., J. Zhou, R. Han, F. Yu, K. Liu, M. Zhao, Y. Liu, Z. Xue, and S. Zhao. 2023. Phosphatase A1 accessory protein PlaS from Serratia marcescens controls cell membrane permeability, fluidity, hydrophobicity, and fatty acid composition in Escherichia coli BL21. International Journal of Biological Macromolecules 253: 126776. https://doi.org/10.1016/j.ijbiomac.2023.126776.
[12]
Lin, L., C. Li, F. Wang, X. Wang, Y. Zhang, S. Liu, W. Liang, L. Hua, Z. Peng, and B. Wu. 2021. Complete genome sequence of Pasteurella multocida HuN001, a capsular type A strain from a human. Microbiology Resource Announcements 10: e0039521. https://doi.org/10.1128/mra.00395-21.
[13]
Liu, Y.Y., Y. Wang, T.R. Walsh, L.X. Yi, R. Zhang, J. Spencer, Y. Doi, G. Tian, B. Dong, X. Huang, et al. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases 16: 161–168. https://doi.org/10.1016/s1473-3099(15)00424-7.
[14]
Lv, Q., Y. Shang, H. Bi, J. Yang, L. Lin, C. Shi, M. Wang, R. Xie, Z. Zhu, F. Wang, et al. 2023. Identification of two-component system ArcAB and the universal stress protein E in Pasteurella multocida and their effects on bacterial fitness and pathogenesis. Microbes and Infection :105235. https://doi.org/10.1016/j.micinf.2023.105235.
[15]
Michael, G.B., J.T. Bossé, and S. Schwarz. 2018. Antimicrobial resistance in Pasteurellaceae of veterinary origin. Microbiology Spectrum 6. https://doi.org/10.1128/microbiolspec.arba-0022-2017.
[16]
Peng, Z., L. Lin, X. Wang, H. Chen, and B. Wu. 2022. The public health concern of Pasteurella multocida should not be ignored. Lancet Microbe 3: e560. https://doi.org/10.1016/s2666-5247(22)00152-5.
[17]
Piorunek, M., B. Brajer-Luftmann, and J. Walkowiak. 2023. Pasteurella multocida infection in humans. Pathogens 12 (10): 1210. https://doi.org/10.3390/pathogens12101210.
[18]
Poirel, L., A. Jayol, and P. Nordmann. 2017. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clinical Microbiology Reviews 30: 557–596. https://doi.org/10.1128/cmr.00064-16.
[19]
Sebbar, G., S. Fellahi, A. Filali-Maltouf, and B. Belkadi. 2020. Detection of colistin resistance in mannheimia hemolytica & Pasteurella multocida isolates from ruminants in Morocco. Pakistan Veterinary Journal 41: 127–131. https://doi.org/10.29261/pakvetj/2020.077.
[20]
Seethalakshmi, P.S., R. Rajeev, A. Prabhakaran, G.S. Kiran, and J. Selvin. 2023. The menace of colistin resistance across globe: Obstacles and opportunities in curbing its spread. Microbiological Research 270: 127316. https://doi.org/10.1016/j.micres.2023.127316.
[21]
Sharma, J., D. Sharma, A. Singh, and K. Sunita. 2022. Colistin resistance and management of drug resistant infections. Canadian Journal of Infectious Diseases and Medical Microbiology 2022: 4315030. https://doi.org/10.1155/2022/4315030.
[22]
Sun, J., Y. Xu, R. Gao, J. Lin, W. Wei, S. Srinivas, D. Li, R.S. Yang, X.P. Li, X.P. Liao, et al. 2017. Deciphering MCR-2 colistin resistance. mBio 8: 10–128. https://doi.org/10.1128/mbio.00625-17.
[23]
Walsh, T.R., A.C. Gales, R. Laxminarayan, and P.C. Dodd. 2023. Antimicrobial rResistance: addressing a global threat to humanity. PLoS Medicine 20: e1004264. https://doi.org/10.1371/journal.pmed.1004264.
[24]
Wang, J., W. Ma, Z. Wang, Y. Li, and X. Wang. 2014. Construction and characterization of an Escherichia coli mutant producing Kdo2-lipid A. Marine Drugs 12: 1495–1511. https://doi.org/10.3390/md12031495.
[25]
WHO. 2018. Critically important antimicrobials for human medicine?: 6th revision. https://iris.who.int/bitstream/handle/10665/312266/9789241515528-eng.pdf?sequence=1. Accessed 7 Oct 2023.
[26]
Wilkie, I.W., M. Harper, J.D. Boyce, and B. Adler. 2012. Pasteurella multocida: Diseases and pathogenesis. Current Topics in Microbiology and Immunology 361: 1–22. https://doi.org/10.1007/82_2012_216.
[27]
Wilson, B.A., and M. Ho. 2013. Pasteurella multocida: From zoonosis to cellular microbiology. Clinical Microbiology Reviews 26: 631–655. https://doi.org/10.1128/cmr.00024-13.
Funding
Hubei Provincial Natural Science Foundation of China(2023AFA094); Yingzi Tech & Huazhong Agricultural University Intelligent Research Institute of Food Health(IRIFH202209); Fundamental Research Funds for the Central Universities(2662023PY005)
PDF

Accesses

Citations

Detail

Sections
Recommended

/