Preparation and interaction mechanism analysis of single-chain fragment variables against phenylethanolamine A

Long Li1,2, Ren Hou1,2, Huaming Li1, Shiyun Han1, Jixiang Liang1, Yu Si1, Dapeng Peng1,4,5()

PDF
Animal Disease ›› 2024, Vol. 4 ›› Issue (1) : 8. DOI: 10.1186/s44149-024-00113-2

Preparation and interaction mechanism analysis of single-chain fragment variables against phenylethanolamine A

  • Long Li1,2, Ren Hou1,2, Huaming Li1, Shiyun Han1, Jixiang Liang1, Yu Si1, Dapeng Peng1,4,5()
Author information +
History +

Abstract

This is the first report on the screening, expression, and recognition mechanism analysis of single-chain fragment variable (scFv) against phenylethanolamine A (PEAA), a newly emerged β-adrenergic agonist illegally used as a feed additive for growth promotion. The PEAA-specific scFv scFv, called scFv-32, was screened from hybridoma cell lines by phage display and was found to be optimally expressed in the E. colisystem. The ic-ELISA results revealed an IC50 value of 10.34g/L for scFv-32 and no cross-reactivity with other β-adrenergic agonists. Homology modeling and molecular docking revealed the key binding sites VAL178, TYP228, and ASP229. One hydrogen bond, two pi-sigma bonds, and one pi-pi bond maintain the formation of the antibody drug complex. Alanine scanning mutagenesis of the three predicted key binding sites showed that the mutants completely lost their recognition activity, which confirmed the accuracy of the theoretical analysis. These results are valuable for the preparation of scFvs and the analysis of the molecular recognition mechanism of antigen-antibodies.

Keywords

Phenylethanolamine A / ScFv / Recognition mechanism / Homology modeling / Molecular docking

Cite this article

Download citation ▾
Long Li, Ren Hou, Huaming Li, Shiyun Han, Jixiang Liang, Yu Si, Dapeng Peng. Preparation and interaction mechanism analysis of single-chain fragment variables against phenylethanolamine A. Animal Disease, 2024, 4(1): 8 https://doi.org/10.1186/s44149-024-00113-2

References

[1]
Ahmed, S., J. Ning, D. Peng, T. Chen, I. Ahmad, A. Ali, Z. Lei, bakr Shabbir M. Abu, G. Cheng, and Z. Yuan. 2020. Current advances in immunoassays for the detection of antibiotics residues: a review. Food and Agricultural Immunology 31 (1): 268–290. https://doi.org/10.1080/09540105.2019.1707171.
[2]
Bai, Y., Z. Liu, Y. Bi, X. Wang, Y. Jin, L. Sun, H. Wang, C. Zhang, and S. Xu. 2012. Preparation of polyclonal antibodies and development of a direct competitive enzyme-linked immunosorbent assay to detect residues of phenylethanolamine A in urine samples. Journal of Agricultural and Food Chemistry 60 (46): 11618–11624. https://doi.org/10.1021/jf3036066.
[3]
Basu, K., E.M. Green, Y. Cheng, and C.S. Craik. 2019. Why recombinant antibodies-benefits and applications. Current Opinion Biotechnology 60: 153–158. https://doi.org/10.1016/j.copbio.2019.01.012.
[4]
Bienert, S., A. Waterhouse, T.A. de Beer, G. Tauriello, G. Studer, L. Bordoli, and T. Schwede. 2017. The SWISS-MODEL Repository-new features and functionality. Nucleic Acids Research 45 (D1): D313–D319. https://doi.org/10.1093/nar/gkw1132.
[5]
Dai, M., Y. Gong, A. Liu, L. Zhang, J. Lin, M. Zhang, and X. Yu. 2015. Development of a colloidal gold-based lateral-flow immunoassay for the rapid detection of phenylethanolamine A in swine urine. Analytical Methods 7 (10): 4130–4137. https://doi.org/10.1039/C5AY00641D.
[6]
Dong, S., M. Gao, Z. Bo, L. Guan, X. Hu, H. Zhang, B. Liu, P. Li, K. He, X. Liu, and C. Zhang. 2020. Production and characterization of a single-chain variable fragment antibody from a site-saturation mutagenesis library derived from the anti-Cry1A monoclonal antibody. International Journal of Biological Macromol 149: 60–69. https://doi.org/10.1016/j.ijbiomac.2020.01.152.
[7]
Farajnia, S., V. Ahmadzadeh, A. Tanomand, K. Veisi, S.A. Khosroshahi, and L. Rahbarnia. 2014. Development trends for generation of single-chain antibody fragments. Immunopharmacology and Immunotoxicology 36 (5): 297–308. https://doi.org/10.3109/08923973.2014.945126.
[8]
Galan, A., L. Comor, A. Horvatic, J. Kules, N. Guillemin, V. Mrljak, and M. Bhide. 2016. Library-based display technologies: Where do we stand? Molecular Biosystems 12 (8): 2342–2358. https://doi.org/10.1039/c6mb00219f.
[9]
Gupta, S.K., and P. Shukla. 2017. Microbial platform technology for recombinant antibody fragment production: A review. Critical Reviews in Microbiology 43 (1): 31–42. https://doi.org/10.3109/1040841X.2016.1150959.
[10]
He, X., C.F. Duan, Y.H. Qi, J. Dong, G.N. Wang, G.X. Zhao, J.P. Wang, and J. Liu. 2017. Virtual mutation and directional evolution of anti-amoxicillin ScFv antibody for immunoassay of penicillins in milk. Analytical Biochemistry 517: 9–17. https://doi.org/10.1016/j.ab.2016.10.020.
[11]
He, J., X. Tao, K. Wang, G. Ding, J. Li, Q.X. Li, S.J. Gee, B.D. Hammock, and T. Xu. 2019. One-step immunoassay for the insecticide carbaryl using a chicken single-chain variable fragment (scFv) fused to alkaline phosphatase. Analytical Biochemistry 572: 9–15. https://doi.org/10.1016/j.ab.2019.02.022.
[12]
Jiang, D., B. Cao, M. Wang, H. Yang, K. Zhao, J. Li, M. Li, L. Sun, and A. Deng. 2017. Development of a highly sensitive and specific monoclonal antibody based enzyme-linked immunosorbent assay for the detection of a new β-agonist, phenylethanolamine A, in food samples. Journal of the Science of Food and Agriculture 97 (3): 1001–1009. https://doi.org/10.1002/jsfa.7826.
[13]
Jiang, W., L. Zeng, L. Liu, S. Song, and H. Kuang. 2018. Immunochromatographic strip for rapid detection of phenylethanolamine A. Food and Agricultural Immunology 29 (1): 182–192. https://doi.org/10.1080/09540105.2017.1364709.
[14]
Lee, W., A.A. Syed, C.Y. Leow, S.C. Tan, and C.H. Leow. 2018. Isolation and characterization of a novel anti-salbutamol chicken scFv for human doping urinalysis. Analytical Biochemistry 555: 81–93. https://doi.org/10.1016/j.ab.2018.05.009.
[15]
Li, M., H. Yang, S. Li, K. Zhao, J. Li, D. Jiang, L. Sun, and A. Deng. 2014. Ultrasensitive and quantitative detection of a new beta-agonist phenylethanolamine A by a novel immunochromatographic assay based on surface-enhanced Raman scattering (SERS). Journal of Agricultural and Food Chemistry 62 (45): 10896–10902. https://doi.org/10.1021/jf503599x.
[16]
Li, X., W. Wang, L. Wang, Q. Wang, X. Pei, and H. Jiang. 2015a. Rapid determination of phenylethanolamine A in biological samples by enzyme-linked immunosorbent assay and lateral-flow immunoassay. Analytical and Bioanalytical Chemistry 407 (25): 7615–7624. https://doi.org/10.1007/s00216-015-8917-6.
[17]
Li, Y., S. Lu, Z. Liu, L. Sun, J. Guo, P. Hu, J. Zhang, Y. Zhang, Y. Wang, H. Ren, X. Meng, and Y. Zhou. 2015b. A monoclonal antibody based enzyme-linked immunosorbent assay for detection of phenylethanolamine A in tissue of swine. Food Chemistry 167: 40–44. https://doi.org/10.1016/j.foodchem.2014.06.085.
[18]
Li, L., S. Wu, Y. Si, H. Li, X. Yin, and D. Peng. 2022. Single-chain fragment variable produced by phage display technology: Construction, selection, mutation, expression, and recent applications in food safety. Comprehensive Reviews in Food Science and Food Safety. https://doi.org/10.1111/1541-4337.13018.
[19]
Liu, Y., S. Liu, C. Xu, M. Lin, Y. Li, C. Shen, Y. Liang, X. Sun, D. Wang, P. Lü, and X. Liu. 2021. Epitopes prediction for microcystin-LR by molecular docking. Ecotoxicology and Environmental Safety 227: 112925. https://doi.org/10.1016/j.ecoenv.2021.112925.
[20]
Liu, M., Y. Bai, L. Dou, Y. Kong, Z. Wang, K. Wen, and J. Shen. 2022. A highly salt-tolerant monoclonal antibody-based enzyme-linked immunosorbent assay for the rapid detection of phenylethanolamine A in urine. Food and Agricultural Immunology 33 (1): 575–587. https://doi.org/10.1080/09540105.2022.2084043.
[21]
Lu, Q., Y.Y. Hou, X.X. Liu, H. Wang, J.J. Hou, J.L. Wei, S.S. Zhou, and X.Y. Liu. 2020. Construction, expression and functional analysis of anti-clenbuterol codon-optimized scFv recombinant antibody. Food and Chemistry Toxicology 135: 110973. https://doi.org/10.1016/j.fct.2019.110973.
[22]
Ouyang, S., S. Yu, and Y. Le. 2022. Current advances in immunoassays for the detection of β2-agonists. Foods 11 (6): 803. https://doi.org/10.3390/foods11060803.
[23]
Peltomaa, R., R. Barderas, E. Benito-Pe?a, and M.C. Moreno-Bondi. 2022. Recombinant antibodies and their use for food immunoanalysis. Analytical and Bioanalytical Chemistry 414 (1): 193–217. https://doi.org/10.1007/s00216-021-03619-7.
[24]
Peng, D., L. Zhao, L. Zhang, Y. Pan, Y. Tao, Y. Wang, F. Sheng, and Z. Yuan. 2019. A novel indirect competitive enzyme-linked immunosorbent assay format for the simultaneous determination of rRactopamine and phenylethanolamine A residues in swine urine. Food Analytical Methods 12 (5): 1077–1085. https://doi.org/10.1007/s12161-019-01445-3.
[25]
Pierce, B.G., K. Wiehe, H. Hwang, B.H. Kim, T. Vreven, and Z. Weng. 2014. ZDOCK server: Interactive docking prediction of protein-protein complexes and symmetric multimers. Bioinformatics 30 (12): 1771–1773. https://doi.org/10.1093/bioinformatics/btu097.
[26]
Rahbarnia, L., S. Farajnia, H. Babaei, J. Majidi, K. Veisi, A. Tanomand, and B. Akbari. 2016. Invert biopanning: A novel method for efficient and rapid isolation of scFvs by phage display technology. Biologicals?: Journal of the International Association of Biological Standardization 44 (6): 567–573. https://doi.org/10.1016/j.biologicals.2016.07.002.
[27]
Reader, R.H., R.G. Workman, B.C. Maddison, and K.C. Gough. 2019. Advances in the production and batch reformatting of phage antibody libraries. Molecular Biotechnology 61 (11): 801–815. https://doi.org/10.1007/s12033-019-00207-0.
[28]
Roth, K.D.R., E.V. Wenzel, M. Ruschig, S. Steinke, N. Langreder, P.A. Heine, K.T. Schneider, R. Ballmann, V. Fuhner, P. Kuhn, et al. 2021. Developing recombinant antibodies by phage display against infectious diseases and toxins for diagnostics and therapy. Frontiers in Cellular and Infection Microbiology 11: 697876. https://doi.org/10.3389/fcimb.2021.697876.
[29]
Safarpour, H., M. Shahmirzaie, E. Rezaee, M. Barati, M.R. Safarnejad, and H.S. F. 2018. Isolation and characterization of novel phage displayed scFv fragment for human tumor necrosis factor alpha and molecular docking analysis of their interactions. Iranian Journal of Pharmaceutical Research 17 (2): 743–752. https://doi.org/10.22037/IJPR.2018.2229.
[30]
Shi, F.S., L. Zhang, W.Q. Xia, J. Liu, H.C. Zhang, and J.P. Wang. 2017. Production and evolution of a ScFv antibody for immunoassay of residual phenothiazine drugs in meat based on computational simulation. Analytical Methods 9 (30): 4455–4463. https://doi.org/10.1039/C7AY01103B.
[31]
Sompunga, P., N. Pruksametanan, K. Rangnoi, K. Choowongkomon, and M. Yamabhai. 2019. Generation of human and rabbit recombinant antibodies for the detection of Zearalenone by phage display antibody technology. Talanta 201: 397–405. https://doi.org/10.1016/j.talanta.2019.04.034.
[32]
Tang, Q., F. Cai, A. Deng, and J. Li. 2015. Ultrasensitive competitive electrochemiluminescence immunoassay for the β-adrenergic agonist phenylethanolamine A using quantum dots and enzymatic amplification. Microchimica Acta 182 (1): 139–147. https://doi.org/10.1007/s00604-014-1292-8.
[33]
Tao, X., Y. Huang, C. Wang, F. Chen, L. Yang, L. Ling, Z. Che, and X. Chen. 2020. Recent developments in molecular docking technology applied in food science: A review. International Journal of Food Science & Technology 55 (1): 33–45. https://doi.org/10.1111/ijfs.14325.
[34]
Toride, King.M., and C.L. Brooks. 2018. Epitope mapping of antibody-antigen interactions with X-ray crystallography. Methods in Molecular Biology 1785: 13–27. https://doi.org/10.1007/978-1-4939-7841-0_2.
[35]
Wang, J.P., J. Dong, C.F. Duan, H.C. Zhang, X. He, G.N. Wang, G.X. Zhao, and J. Liu. 2016. Production and directional evolution of antisarafloxacin ScFv antibody for immunoassay of fluoroquinolones in milk. Journal of Agricultural and Food Chemistry 64 (42): 7957–7965. https://doi.org/10.1021/acs.jafc.6b03356.
[36]
Wang, Z., Q. Zhou, Y. Guo, H. Hu, Z. Zheng, S. Li, Y. Wang, and Y. Ma. 2021. Rapid detection of Ractopamine and Salbutamol in swine urine by immunochromatography based on Selenium Nanoparticles. International Journal of Nanomedicine 16: 2059–2070. https://doi.org/10.2147/IJN.S292648.
[37]
Xie, S., J. Wang, X. Yu, T. Peng, K. Yao, S. Wang, D. Liang, Y. Ke, Z. Wang, and H. Jiang. 2020. Site-directed mutations of anti-amantadine scFv antibody by molecular dynamics simulation: Prediction and validation. Journal of Molecular Modeling 26 (3): 49. https://doi.org/10.1007/s00894-020-4286-y.
[38]
Xu, C., W. Miao, Y. He, Y. Zu, X. Liu, J. Li, and X. Liu. 2019. Construction of an immunized rabbit phage display antibody library for screening microcystin-LR high sensitive single-chain antibody. International Journal of Biological Macromolecules 123: 369–378. https://doi.org/10.1016/j.ijbiomac.2018.11.122.
[39]
Yan, P., J. Zhang, Q. Tang, A. Deng, and J. Li. 2014. A quantum dot based electrochemiluminescent immunosensor for the detection of pg level phenylethanolamine A using gold nanoparticles as substrates and electron transfer accelerators. The Analyst 139 (17): 4365–4372. https://doi.org/10.1039/c4an00378k.
[40]
Li, Y., Y. Hu, Z. Tu, Z. Ning, Q. He, and J. Fu. 2020. Research on the mechanism of action of a citrinin and anti-citrinin antibody based on Mimotope X27. Toxins (Basel) 12 (10). https://doi.org/10.3390/toxins12100655.
Funding
National Natural Science Foundation of China(32072920); the Fundamental Research Funds for the Central Universities(2662022DKPY007); the HZAU-AGIS Cooperation Fund(SZYJY2022024)
PDF

Accesses

Citations

Detail

Sections
Recommended

/