A dynamic core evolutionary clustering algorithm based on saturated memory

Haibin Xie, Peng Li, Zhiyong Ding

Autonomous Intelligent Systems ›› 2023, Vol. 3 ›› Issue (1) : 8. DOI: 10.1007/s43684-023-00055-5
Original Article

A dynamic core evolutionary clustering algorithm based on saturated memory

Author information +
History +

Abstract

Because the number of clustering cores needs to be set before implementing the K-means algorithm, this type of algorithm often fails in applications with increasing data and changing distribution characteristics. This paper proposes an evolutionary algorithm DCC, which can dynamically adjust the number of clustering cores with data change. DCC algorithm uses the Gaussian function as the activation function of each core. Each clustering core can adjust its center vector and coverage based on the response to the input data and its memory state to better fit the sample clusters in the space. The DCC algorithm model can evolve from 0. After each new sample is added, the winning dynamic core can be adjusted or split by competitive learning, so that the number of clustering cores of the algorithm always maintains a better adaptation relationship with the existing data. Furthermore, because its clustering core can split, it can subdivide the densely distributed data clusters. Finally, detailed experimental results show that the evolutionary clustering algorithm DCC based on the dynamic core method has excellent clustering performance and strong robustness.

Keywords

Evolutionary clustering / Dynamic core / Memory saturation / Incremental clustering

Cite this article

Download citation ▾
Haibin Xie, Peng Li, Zhiyong Ding. A dynamic core evolutionary clustering algorithm based on saturated memory. Autonomous Intelligent Systems, 2023, 3(1): 8 https://doi.org/10.1007/s43684-023-00055-5

References

[1]
SaxenaA., PrasadM., GuptaA., BharillN., PatelO.P., TiwariA., ErM.J., DingW., LinC.T.. A review of clustering techniques and developments. Neurocomputing, 2017, 267: 664-681
CrossRef Google scholar
[2]
LiF., QiaoH., ZhangB.. Discriminatively boosted image clustering with fully convolutional auto-encoders. Pattern Recognit., 2017, 83: 161-173
CrossRef Google scholar
[3]
BagirovA.M., UgonJ., WebbD.. Fast modified global k-means algorithm for incremental cluster construction. Pattern Recognit., 2011, 44(4):866-876
CrossRef Google scholar
[4]
YiX., ZhangY.. Equally contributory privacy-preserving k-means clustering over vertically partitioned data. Inf. Sci., 2013, 38(1):97-107
CrossRef Google scholar
[5]
FräntiP., SieranojaS.. K-means properties on six clustering benchmark datasets. Appl. Intell., 2018, 48(12):4743-4759
CrossRef Google scholar
[6]
TsapanosN., TefasA., NikolaidisN., PitasI.. A distributed framework for trimmed kernel k-means clustering. Pattern Recognit., 2015, 48(8):2685-2698
CrossRef Google scholar
[7]
TzortzisG., LikasA.. The minmax k-means clustering algorithm. Pattern Recognit., 2014, 47(7):2505-2516
CrossRef Google scholar
[8]
LinK.-P.. A novel wvolutionary kernel intuitionistic fuzzy c-means clustering algorithm. IEEE Trans. Fuzzy Syst., 2014, 22(5):1074-1087
CrossRef Google scholar
[9]
CelebiM.E., KingraviH.A., VelaP.A.. A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl., 2013, 40(1):200-210
CrossRef Google scholar
[10]
WuJ., LiuH., XiongH., CaoJ., ChenJ.. K-means based consensus clustering: a unified view. IEEE Trans. Knowl. Data Eng., 2015, 27(1):155-169
CrossRef Google scholar
[11]
SahaJ., MukherjeeJ.. Cnak: cluster number assisted k-means. Pattern Recognit., 2021, 110
CrossRef Google scholar
[12]
ZhangY., TangwongsanK., TirthapuraS.. Fast streaming k-means clustering with coreset caching. IEEE Trans. Knowl. Data Eng., 2022, 34: 2740-2754
CrossRef Google scholar
[13]
BortolotiF.D., de OliveiraE., CiarelliP.M.. Supervised kernel density estimation k-means. Expert Syst. Appl., 2021, 168
CrossRef Google scholar
[14]
MehmoodR., ZhangG., BieR., DawoodH., AhmadH.. Clustering by fast search and find of density peaks via heat diffusion. Neurocomputing, 2016, 208: 210-217
CrossRef Google scholar
[15]
RodriguezA., LaioA.. Clustering by fast search and find of density peaks. Science, 2014, 344(6191):1492-1496
CrossRef Google scholar
[16]
XuX., DingS., ShiZ.. An improved density peaks clustering algorithm with fast finding cluster centers. Knowl.-Based Syst., 2018, 158: 65-74
CrossRef Google scholar
[17]
LiZ., TangY.. Comparative density peaks clustering. Expert Syst. Appl., 2018, 95: 236-247
CrossRef Google scholar
[18]
YangM.-S., LaiC.-Y., LinC.-Y.. A robust EM clustering algorithm for Gaussian mixture models. Pattern Recognit., 2012, 45(11):3950-3961
CrossRef Google scholar
[19]
EsterM., KriegelH.-P., SanderJ., XuX.. A density-based algorithm for discovering clusters in large spatial databases with noise. Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. KDD’96, 1996 Menlo Park AAAI Press 226-231
[20]
SchubertE., SanderJ., EsterM., KriegelH.P., XuX.. Dbscan revisited, revisited: why and how you should (still) use dbscan. ACM Trans. Database Syst., 2017, 42(3
CrossRef Google scholar
[21]
Mahesh KumarK., Rama Mohan ReddyA.. A fast dbscan clustering algorithm by accelerating neighbor searching using groups method. Pattern Recognit., 2016, 58: 39-48
CrossRef Google scholar
[22]
LuchiD., Loureiros RodriguesA., Miguel VarejãoF.. Sampling approaches for applying dbscan to large datasets. Pattern Recognit. Lett., 2019, 117: 90-96
CrossRef Google scholar
[23]
KohonenT.. The self-organizing map. Neurocomputing, 1998, 21 1):1-6
CrossRef Google scholar
[24]
KobrenA., MonathN., KrishnamurthyA., McCallumA.. A hierarchical algorithm for extreme clustering. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD’17, 2017 New York Association for Computing Machinery 255-264
CrossRef Google scholar
[25]
NguyenT.T., DangM.T., LuongA.V., LiewA.W.-C., LiangT., McCallJ.. Multi-label classification via incremental clustering on an evolving data stream. Pattern Recognit., 2019, 95: 96-113
CrossRef Google scholar
[26]
ShafeeqA.. Dynamic clustering of data with modified k-means algorithm. International Conference on Information and Computer Networks, 2012
CrossRef Google scholar
[27]
LughoferE.. A dynamic split-and-merge approach for evolving cluster models. Evolv. Syst., 2012, 3: 135-151
CrossRef Google scholar
[28]
BlackM.M., HickeyR.J.. The use of time stamps in handling latency and concept drift in online learning. Evolv. Syst., 2012, 3: 203-220
CrossRef Google scholar
[29]
ZhengL.. Improved K-means clustering algorithm based on dynamic clustering. Int. J. Adv. Res. Big Data Manag. Syst., 2019, 4: 17-26
CrossRef Google scholar
[30]
LiH.-J., BuZ., WangZ., CaoJ.. Dynamical clustering in electronic commerce systems via optimization and leadership expansion. IEEE Trans. Ind. Inform., 2020, 16(8):5327-5334
CrossRef Google scholar
[31]
BernsteinF., ModaresiS., SauréD.. A dynamic clustering approach to data-driven assortment personalization. Manag. Sci., 2019, 65(5):2095-2115
CrossRef Google scholar
[32]
KhanI., LuoZ., HuangJ.Z., ShahzadW.. Variable weighting in fuzzy k-means clustering to determine the number of clusters. IEEE Trans. Knowl. Data Eng., 2020, 32(9):1838-1853
CrossRef Google scholar
[33]
GuoP., ChenC.L.P., LyuM.R.. Cluster number selection for a small set of samples using the Bayesian Ying-Yang model. IEEE Trans. Neural Netw., 2002, 13(3):757-763
CrossRef Google scholar
[34]
YaoY., LiY., JiangB., ChenH.. Multiple kernel k-means clustering by selecting representative kernels. IEEE Trans. Neural Netw. Learn. Syst., 2021, 32: 4983-4996
CrossRef Google scholar
[35]
WangX.-F., HuangD.-S.. A novel density-based clustering framework by using level set method. IEEE Trans. Knowl. Data Eng., 2009, 21(11):1515-1531
CrossRef Google scholar
[36]
HuangD., WangC.-D., LaiJ.-H.. Locally weighted ensemble clustering. IEEE Trans. Cybern., 2018, 48(5):1460-1473
CrossRef Google scholar
[37]
MinE., GuoX., LiuQ., ZhangG., CuiJ., LongJ.. A survey of clustering with deep learning: from the perspective of network architecture. IEEE Access, 2018, 6: 39501-39514
CrossRef Google scholar
[38]
YangL., FanW., BouguilaN.. Clustering analysis via deep generative models with mixture models. IEEE Trans. Neural Netw. Learn. Syst., 2022, 33: 340-350
CrossRef Google scholar
[39]
MonathN., KobrenA., KrishnamurthyA., GlassM.R., McCallumA.. Scalable hierarchical clustering with tree grafting. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. KDD’19, 2019 New York Association for Computing Machinery 1438-1448
CrossRef Google scholar
[40]
XieH., LiP.. A density-based evolutionary clustering algorithm for intelligent development. Eng. Appl. Artif. Intell., 2021, 104
CrossRef Google scholar
[41]
YuZ., LuoP., YouJ., WongH.-S., LeungH., WuS., ZhangJ., HanG.. Incremental semi-supervised clustering ensemble for high dimensional data clustering. IEEE Trans. Knowl. Data Eng., 2016, 28(3):701-714
CrossRef Google scholar
[42]
YuH., LuJ., ZhangG.. Online topology learning by a Gaussian membership-based self-organizing incremental neural network. IEEE Trans. Neural Netw. Learn. Syst., 2020, 31(10):3947-3961
CrossRef Google scholar
[43]
BergD.A., SuY., Jimenez-CyrusD., PatelA., HuangN., MorizetD., LeeS., ShahR., RingelingF.R., JainR., EpsteinJ.A., WuQ.-F., CanzarS., MingG.-L., SongH., BondA.M.. A common embryonic origin of stem cells drives developmental and adult neurogenesis. Cell, 2019, 177(3):654-66815
CrossRef Google scholar
[44]
FahadA., AlshatriN., TariZ., AlamriA., KhalilI., ZomayaA.Y., FoufouS., BourasA.. A survey of clustering algorithms for big data: taxonomy and empirical analysis. IEEE Trans. Emerg. Top. Comput., 2014, 2(3):267-279
CrossRef Google scholar
[45]
ŁukasikS., KowalskiP.A., CharytanowiczM., KulczyckiP.. Clustering using flower pollination algorithm and Calinski-Harabasz index. 2016 IEEE Congress on Evolutionary Computation (CEC), 2016 2724-2728
CrossRef Google scholar
[46]
StrehlA., GhoshJ.. Cluster esembles—a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res., 2003, 3: 583-617
CrossRef Google scholar
[47]
ChakrabortyS., NagwaniN.K.. Analysis and study of incremental k-means clustering algorithm. Commun. Comput. Inf. Sci., 2011, 169: 338-341
CrossRef Google scholar
[48]
DeyL., ChakrabortyS., NagwaniN.K.. Performance comparison of incremental k-means and incremental DBSCAN algorithms. Comput. Sci., 2013, 27(11):14-18 http://doi.org/10.5120/3346-4611
[49]
FritzkeB.. A growing neural gas network learns topologies. Proceedings of the 7th International Conference on Neural Information Processing Systems, 1994 625-632
[50]
MarslandS., ShapiroJ., NehmzowU.. A self-organising network that grows when required. Neural Netw., 2002, 15: 1041-1058
CrossRef Google scholar
[51]
FuraoS., HasegawaO.. An incremental network for on-line unsupervised classification and topology learning. Neural Netw., 2016, 19(1):90-106
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/