Robust formation control for unicycle robots with directional sensor information

Yibei Li, Lizheng Liu, Zhongxue Gan, Xiaoming Hu

Autonomous Intelligent Systems ›› 2023, Vol. 3 ›› Issue (1) : 6. DOI: 10.1007/s43684-023-00052-8
Original Article

Robust formation control for unicycle robots with directional sensor information

Author information +
History +

Abstract

In this paper, the formation control problem for a multi-agent system is studied. Two new robust control algorithms for serial and parallel formations respectively are proposed, which take the constraints of limited field of view into consideration. Without the need for any global information, the only relative information required is distance and bearing angle, thus is easy to implement with onboard directional sensors. It is then demonstrated how complex formations can be realized by combining the proposed basic controllers. Finally, effectiveness of the proposed algorithms is illustrated by numerical examples.

Keywords

Formation control / Serial and parallel formation / Leader-follower control / Multi-agent systems

Cite this article

Download citation ▾
Yibei Li, Lizheng Liu, Zhongxue Gan, Xiaoming Hu. Robust formation control for unicycle robots with directional sensor information. Autonomous Intelligent Systems, 2023, 3(1): 6 https://doi.org/10.1007/s43684-023-00052-8

References

[1]
HeintzC., HoaggJ.B.. Formation control for agents modeled with extended unicycle dynamics that includes orientation kinematics on so (m) and speed constraints. Syst. Control Lett., 2020, 146
CrossRef Google scholar
[2]
RozaA., MaggioreM., ScardoviL.. A smooth distributed feedback for formation control of unicycles. IEEE Trans. Autom. Control, 2019, 64(12):4998-5011
CrossRef Google scholar
[3]
LiuT., JiangZ.-P.. Distributed formation control of nonholonomic mobile robots without global position measurements. Automatica, 2013, 49(2):592-600
CrossRef Google scholar
[4]
DasA.K., FierroR., KumarV., OstrowskiJ.P., SpletzerJ., TaylorC.J.. A vision-based formation control framework. IEEE Trans. Robot. Autom., 2002, 18(5):813-825
CrossRef Google scholar
[5]
De MarinaH.G., JayawardhanaB., CaoM.. Distributed rotational and translational maneuvering of rigid formations and their applications. IEEE Trans. Robot., 2016, 32(3):684-697
CrossRef Google scholar
[6]
ZhaoS., ZelazoD.. Bearing rigidity theory and its applications for control and estimation of network systems: life beyond distance rigidity. IEEE Control Syst. Mag., 2019, 39(2):66-83
CrossRef Google scholar
[7]
JadbabaieA., LinJ., MorseA.S.. Coordination of groups of mobile autonomous agents using nearest neighbor rules. IEEE Trans. Autom. Control, 2003, 48(6):988-1001
CrossRef Google scholar
[8]
VidalR., ShakerniaO., SastryS.. Formation control of nonholonomic mobile robots with omnidirectional visual servoing and motion segmentation. IEEE International Conference on Robotics and Automation, 2003, 2003 Los Alamitos IEEE 584-589
[9]
BichoE., MonteiroS.. Formation control for multiple mobile robots: a non-linear attractor dynamics approach. Proceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2003) (Cat. No. 03CH37453), 2003 Los Alamitos IEEE 2016-2022
CrossRef Google scholar
[10]
CadenaC., CarloneL., CarrilloH., LatifY., ScaramuzzaD., NeiraJ., ReidI., LeonardJ.J.. Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot., 2016, 32(6):1309-1332
CrossRef Google scholar
[11]
ArunA., AyyalasomayajulaR., HunterW., BharadiaD.. P2slam: bearing based wifi slam for indoor robots. IEEE Robot. Autom. Lett., 2022, 7(2):3326-3333
CrossRef Google scholar
[12]
FathianK., SafaouiS., SummersT.H., GansN.R.. Robust distributed planar formation control for higher order holonomic and nonholonomic agents. IEEE Trans. Robot., 2020, 37(1):185-205
CrossRef Google scholar
[13]
GustaviT., HuX.. Observer-based leader-following formation control using onboard sensor information. IEEE Trans. Robot., 2008, 24(6):1457-1462
CrossRef Google scholar
[14]
KhatibO.. Real-time obstacle avoidance for manipulators and mobile robots. Autonomous Robot Vehicles, 1986 Berlin Springer 396-404
CrossRef Google scholar
[15]
Lozano-PerezT.. A simple motion-planning algorithm for general robot manipulators. IEEE J. Robot. Autom., 1987, 3(3):224-238
CrossRef Google scholar
[16]
LatombeJ.-C.. Robot Motion Planning, 2012 Berlin Springer
[17]
LygerosJ., TomlinC., SastryS.. Controllers for reachability specifications for hybrid systems. Automatica, 1999, 35(3):349-370
CrossRef Google scholar
[18]
KoseckaJ.. A Framework for Modeling and Verifying Visually Guided Agents: Design, Analysis and Experiments, 1996 Philadelphia University of Pennsylvania Press
[19]
EgerstedtM., HuX.. A hybrid control approach to action coordination for mobile robots. Automatica, 2002, 38(1):125-130
CrossRef Google scholar
[20]
JohanssonK.H., EgerstedtM., LygerosJ., SastryS.. On the regularization of zeno hybrid automata. Syst. Control Lett., 1999, 38(3):141-150
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/