Approach for improved development of advanced driver assistance systems for future smart mobility concepts

Michael Weber, Tobias Weiss, Franck Gechter, Reiner Kriesten

Autonomous Intelligent Systems ›› 2023, Vol. 3 ›› Issue (1) : 2. DOI: 10.1007/s43684-023-00047-5
Review

Approach for improved development of advanced driver assistance systems for future smart mobility concepts

Author information +
History +

Abstract

To use the benefits of Advanced Driver Assistance Systems (ADAS)-Tests in simulation and reality a new approach for using Augmented Reality (AR) in an automotive vehicle for testing ADAS is presented in this paper. Our procedure provides a link between simulation and reality and should enable a faster development process for future increasingly complex ADAS tests and future mobility solutions. Test fields for ADAS offer a small number of orientation points. Furthermore, these must be detected and processed at high vehicle speeds. That requires high computational power both for developing our method and its subsequent use in testing. Using image segmentation (IS), artificial intelligence (AI) for object recognition, and visual simultaneous localization and mapping (vSLAM), we aim to create a three-dimensional model with accurate information about the test site. It is expected that using AI and IS will significantly improve performance as computational speed and accuracy for AR applications in automobiles.

Keywords

Augmented reality / Advanced driver assistance systems / Visual simultaneous localization and mapping / European new car assessment programme

Cite this article

Download citation ▾
Michael Weber, Tobias Weiss, Franck Gechter, Reiner Kriesten. Approach for improved development of advanced driver assistance systems for future smart mobility concepts. Autonomous Intelligent Systems, 2023, 3(1): 2 https://doi.org/10.1007/s43684-023-00047-5

References

[1]
BenglerK., DietmayerK., FarbeB., et al.. Three decades of driver assistance systems: review and future perspectives. IEEE Intell. Transp. Syst. Mag., 2014, 6: 6-22
CrossRef Google scholar
[2]
BrooksR.R., IyengarS.S.. Multi-Sensor Fusion: Fundamentals and Applications with Software, 1998 Hoboken Prentice Hall https://search.library.wisc.edu/catalog/999904353602121
[3]
CamposC., ElviraR., RodríguezJ.J.G., et al.. ORB-SLAM3: an accurate open-source library for visual, visual-inertial, and multimap SLAM. IEEE Trans. Robot., 2021, 37: 1-17
CrossRef Google scholar
[4]
ChatilaR., LaumondJ.. Position referencing and consistent world modeling for mobile robots. Proceedings. 1985 IEEE International Conference on Robotics and Automation, 1985 138-145
CrossRef Google scholar
[5]
ChatilaR., LaumondJ.-P.. Position referencing and consistent world modeling for mobile robots. 1985 IEEE International Conference on Proceedings Robotics and Automation, 1985 138-145
CrossRef Google scholar
[6]
DarmsM.. Eine Basis-Systemarchitektur zur Sensordatenfusion von Umfeldsensoren fur Fahreras-sistenzsysteme, 2007 Dusseldorf TU Darmstadt de. Zugl.: Darmstadt, Techn. Univ., Diss., 2007. PhD thesis. http://tubiblio.ulb.tu-darmstadt.de/35385/
[7]
M. Darms, Eine basis-systemarchitektur zur sensordatenfusion von umfeldsensoren fuer fahrerassistenzsysteme. PhD thesis, Technische Universitat (2007)
[8]
DarmsM.. WinnerH., HakuliS., WiesbadenG.W.. Fusion umfelderfassender Sensoren. Handbuch Fahrerassistenzsysteme: Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort, 2012 Wiesbaden Vieweg+Teubner 237-248
CrossRef Google scholar
[9]
EngelJ.J., SturmJ., CremersD.. Camera-based navigation of a low-cost quadrocopter. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012 2815-2821
CrossRef Google scholar
[10]
FredrikssonR., LennéM.G., van MontfortS., et al.. European NCAP program developments to address driver distraction, drowsiness and sudden sickness. Front. Neuroergon., 2021, 2 https://www.frontiersin.org/article/10.3389/fnrgo.2021.786674
CrossRef Google scholar
[11]
GasserT.M., SeeckA., Walker SmithB., et al.. WinnerH., et al.. Rahmenbedingungen fur die Fahrerassistenzentwicklung. Handbuch Fahrerassistenzsysteme: Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort, 2015 Wiesbaden Springer 27-54
CrossRef Google scholar
[12]
HakuliS., KrugM., et al.. WinnerH., et al.. Virtuelle integration. Handbuch Fahrerassistenzsysteme, Grundlagen, Komponenten und Systeme fur aktive Sicherheit und Komfort, 2015 Wiesbaden Springer 125-138
CrossRef Google scholar
[13]
KimB.-J., LeeS.-B.. A study on the evaluation method of autonomous emergency vehicle braking for pedestrians test using monocular cameras. Appl. Sci., 2020, 10 https://www.mdpi.com/2076-3417/10/13/4683
CrossRef Google scholar
[14]
MiquetC.. New test method for reproducible real-time tests of ADAS ECUs: “vehicle-in-the-loop” connects real-world vehicle with the virtual world. 5th International Munich Chassis Symposium 2014, 2014 Wiesbaden Springer 575-589
CrossRef Google scholar
[15]
Mur-ArtalR., MontielJ., TardosJ.. ORB-SLAM: a versatile and accurate monocular SLAM system. IEEE Trans. Robot., 2015, 31: 1147-1163
CrossRef Google scholar
[16]
NagaiM.. PfefferP.E.. Research into ADAS with autonomous driving intelligence for future innovation. 5th International Munich Chassis Symposium 2014, 2014 Wiesbaden Springer 779-793
CrossRef Google scholar
[17]
NollM., RappsP.. WinnerH., HakuliS., WiesbadenG.W.. Ultraschallsensorik. Handbuch Fahrerassistenzsysteme: Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort, 2009 Wiesbaden Vieweg+Teubner 110-122 ISBN 978-38348-9977-4
CrossRef Google scholar
[18]
On-Road Automated Driving (ORAD) Committee. Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles. Technical repport (SAE International). https://doi.org/10.4271/J3016_202104. https://www.sae.org/content/j3016_202104 (visited on 05/30/2022)
[19]
[20]
PunkeM., MenzelS., WerthessenB., et al., et al.. WinnerH., et al., et al.. Automotive camera (hardware). Handbook of Driver Assistance Systems: Basic Information, Components and Systems for Active Safety and Comfort, 2016 Cham Springer 431-460 ISBN 978-3-319-123523
CrossRef Google scholar
[21]
RajT., HashimF.H., HuddinA.B., et al.. A survey on LiDAR scanning mechanisms. Electronics, 2020, 9 https://www.mdpi.eom/2079-9292/9/5/741
CrossRef Google scholar
[22]
F. Schuldt, F. Saust, B. Lichte et al., Effiziente systematische Testgenerierung fiir Fahrerassistenzsysteme in virtuellen Umgebungen (2013). https://doi.org/10.24355/dbbs.084-201307101421-0. https://publikationsserver.tu-braunschweig.de/receive/dbbs_mods_00052570
[23]
SeinigerP., WeitzelA., et al.. WinnerH., et al.. Testverfahren für Verbraucherschutz und Gesetzgebung. Handbuch Fahrerassistenzsysteme, Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort, 2015 Wiesbaden Springer 167-182 ISBN 978-3658-05734-3
CrossRef Google scholar
[24]
SieberM., BergG., KarlI., et al.. Validation of driving behavior in the vehicle in the loop: steering responses in critical situations. 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), 2013 1101-1106
CrossRef Google scholar
[25]
StelletJ.E., ZofkaM.R., SchumacherJ., et al.. Testing of advanced driver assistance towards automated driving: a survey and taxonomy on existing approaches and open questions. 2015 IEEE 18th International Conference on Intelligent Transportation Systems, 2015 1455-1462
CrossRef Google scholar
[26]
TaketomiT., UchiyamaH., IkedaS.. Visual SLAM algorithms: a survey from 2010 to 2016. IPSJ Trans. Comput. Vis. Appl., 2017, 9
CrossRef Google scholar
[27]
WinnerH.. WinnerH., HakuliS., WolfG.. Radarsensorik. Handbuch Fahrerassistenzsysteme: Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort, 2012 Wiesbaden Vieweg+Teubner 123-171
CrossRef Google scholar
[28]
WinnerH., HakuliS., LotzF., et al.. Handbuch Fahrerassistenzsysteme—Grundlagen, Komponenten und Systeme für aktive Sicherheit und Komfort, 2015 Berlin Springer ISBN 9783-658-05734-3
CrossRef Google scholar
[29]
YuC., LiuZ., LiuX., et al.. DS-SLAM: a semantic visual SLAM towards dynamic environments. CoRR, 2018 arXiv:1809.08379

Accesses

Citations

Detail

Sections
Recommended

/