End-of-Life Decision making in circular economy using generalized colored stochastic Petri nets

Gautier Vanson, Pascale Marangé, Eric Levrat

Autonomous Intelligent Systems ›› 2022, Vol. 2 ›› Issue (1) : 3. DOI: 10.1007/s43684-022-00022-6
Original Article

End-of-Life Decision making in circular economy using generalized colored stochastic Petri nets

Author information +
History +

Abstract

Circular economy enables to restore product value at the end of life i.e. when no longer used or damaged. Thus, the product life cycle is extended and this economy permits to reduce waste increase and resources rarefaction. There are several revaluation options (reuse, remanufacturing, recycling, …). So, decision makers need to assess these options to determine which is the best decision. Thus, we will present a study about an End-Of-Life (EoL) decision making which aims to facilitate the industrialization of circular economy. For this, it is essential to consider all variables and parameters impacting the decision of the product trajectory. A first part of the work proposes to identify the variables and parameters impacting the decision making. A second part proposes an assessment approach based on a modeling by Generalized Colored Stochastic Petri Net (GCSPN) and on a Monte-Carlo simulation. The approach developed is tested on an industrial example from the literature to analyze the efficiency and effectiveness of the model. This first application showed the feasibility of the approach, and also the limits of the GCSPN modelling.

Keywords

Circular economy / Sustainability / Decision making / Generalized colored stochastic Petri net / Monte-Carlo simulation

Cite this article

Download citation ▾
Gautier Vanson, Pascale Marangé, Eric Levrat. End-of-Life Decision making in circular economy using generalized colored stochastic Petri nets. Autonomous Intelligent Systems, 2022, 2(1): 3 https://doi.org/10.1007/s43684-022-00022-6

References

[1]
ArduinR.H., GrimaudG., LealJ.M., PompidouS., CharbuilletC., LaratteB., AlixT., PerryN.. Influence of scope definition in recycling rate calculation for European e-waste extended producer responsibility. Waste Manag., 2019, 84: 256-268
CrossRef Google scholar
[2]
PineB.J., VictorB., BoyntonA.C.. Making mass customization work. Harv. Bus. Rev., 1993, 71(5):108-111
[3]
L. Diez, Apport de la maintenance prévisionnelle au paradigme de régénération industrielle. PhD thesis, Université de Lorraine, Nancy, France, 2017
[4]
BentahaM.L., VoisinA., MarangéP., BattaïaO., DolguiA.. Prise en compte de l’état des produits pour la planification de leur désassemblage. J. Eur. Syst. Autom., 2016, 49(4–5):579-605
[5]
BufardiA., GheorgheR., KiritsisD., XirouchakisP.. Multicriteria decision-aid approach for product end-of-life alternative selection. Int. J. Prod. Res., 2004, 42(16):3139-3157
CrossRef Google scholar
[6]
ZioutA., AzabA., AtwanM.. A holistic approach for decision on selection of end-of-life products recovery options. J. Clean. Prod., 2014, 65: 497-516
CrossRef Google scholar
[7]
AlamerewY.A., BrissaudD.. Circular economy assessment tool for end of life product recovery strategies. J. Remanufacturing, 2019, 9(3):169-185
CrossRef Google scholar
[8]
AlamerewY.A., KambanouM.L., SakaoT., BrissaudD.. A multi-criteria evaluation method of product-level circularity strategies. Sustain., 2020, 12(12
CrossRef Google scholar
[9]
GaoM., ZhouM., TangY.. Intelligent decision making in disassembly process based on fuzzy reasoning petri nets. IEEE Trans. Syst. Man Cybern., Part B, Cybern., 2004, 34 5):2029-2034
CrossRef Google scholar
[10]
ZhaoS.-E., LiY.-L., FuR., YuanW.. Fuzzy reasoning petri nets and its application to disassembly sequence decision-making for the end-of-life product recycling and remanufacturing. Int. J. Comput. Integr. Manuf., 2014, 27(5):415-421
CrossRef Google scholar
[11]
GuoX., LiuS., ZhouM., TianG.. Disassembly sequence optimization for large-scale products with multiresource constraints using scatter search and petri nets. IEEE Trans. Cybern., 2015, 46(11):2435-2446
CrossRef Google scholar
[12]
BentahaM.-L., VoisinA., MarangéP.. A decision tool for disassembly process planning under end-of-life product quality. Int. J. Prod. Econ., 2020, 219: 386-401
CrossRef Google scholar
[13]
ArasN., VerterV., BoyaciT.. Coordination and priority decisions in hybrid manufacturing/remanufacturing systems. Prod. Oper. Manag., 2006, 15(4):528-543
CrossRef Google scholar
[14]
HanafiJ., KaraS., KaebernickH.. Reverse logistics strategies for end-of-life products. Int. J. Logist. Manag., 2008, 19(3):367-388
CrossRef Google scholar
[15]
RamezaniM., BashiriM., Tavakkoli-MoghaddamR.. A new multi-objective stochastic model for a forward/reverse logistic network design with responsiveness and quality level. Appl. Math. Model., 2013, 37(1–2):328-344
CrossRef Google scholar
[16]
DoualleB., MediniK., BoucherX., BrissaudD., LaforestV.. Selection method of sustainable product-service system scenarios to support decision-making during early design stages. Int. J. Sustain. Eng., 2020, 13(1):1-16
CrossRef Google scholar
[17]
BettinelliM., OccelloM., GenthialD., BrissaudD.. A decision support framework for remanufacturing of highly variable products using a collective intelligence approach. Proc. CIRP, 2020, 90: 594-599
CrossRef Google scholar
[18]
KarmperisA.C., AravossisK., TatsiopoulosI.P., SotirchosA.. Decision support models for solid waste management: review and game-theoretic approaches. Waste Manag., 2013, 33(5):1290-1301
CrossRef Google scholar
[19]
ForresterJ.W.. System dynamics, systems thinking, and soft or. Syst. Dyn. Rev., 1994, 10(2–3):245-256
CrossRef Google scholar
[20]
AbichouB., VoisinA., IungB.. Choquet integral capacity calculus for health index estimation of multi-level industrial systems. IMA J. Manag. Math., 2015, 26(2):205-224
CrossRef Google scholar
[21]
N. Gharbi, M. Ioualalen, Evaluation des performances et de la fiabilité des systèmes multi-classes avec rappel à l’aide des réseaux de petri stochastiques colorés. PhD thesis, Université des sciences et de la technologie Houari Boumediène, Algérie, 2007
[22]
W. Ijomah, A model-based definition of the generic remanufacturing business process. J. Clean. Prod. (2002)
[23]
RaviV.. Evaluating overall quality of recycling of e-waste from end-of-life computers. J. Clean. Prod., 2012, 20(1):145-151
CrossRef Google scholar

Accesses

Citations

Detail

Sections
Recommended

/