Hastily formed knowledge networks and distributed situation awareness for collaborative robotics
Patrick Doherty, Cyrille Berger, Piotr Rudol, Mariusz Wzorek
Hastily formed knowledge networks and distributed situation awareness for collaborative robotics
In the context of collaborative robotics, distributed situation awareness is essential for supporting collective intelligence in teams of robots and human agents where it can be used for both individual and collective decision support. This is particularly important in applications pertaining to emergency rescue and crisis management. During operational missions, data and knowledge are gathered incrementally and in different ways by heterogeneous robots and humans. We describe this as the creation of Hastily Formed Knowledge Networks (HFKNs). The focus of this paper is the specification and prototyping of a general distributed system architecture that supports the creation of HFKNs by teams of robots and humans. The information collected ranges from low-level sensor data to high-level semantic knowledge, the latter represented in part as RDF Graphs. The framework includes a synchronization protocol and associated algorithms that allow for the automatic distribution and sharing of data and knowledge between agents. This is done through the distributed synchronization of RDF Graphs shared between agents. High-level semantic queries specified in SPARQL can be used by robots and humans alike to acquire both knowledge and data content from team members. The system is empirically validated and complexity results of the proposed algorithms are provided. Additionally, a field robotics case study is described, where a 3D mapping mission has been executed using several UAVs in a collaborative emergency rescue scenario while using the full HFKN Framework.
Multi-robot collaboration / Unmanned aerial vehicles / Distributed knowledge representation / Distributed situation awareness / Semantic web technology / Knowledge synchronization / Multi-agent human/robot interaction
[1] |
|
[2] |
|
[3] |
E. Horvitz, Mixed-initiative interaction (IEEE Intelligent Systems, 1999). https://doi.org/10.1109/5254.796083. https://www.microsoft.com/en-us/research/publication/mixed-initiative-interaction/.
|
[4] |
J. Ji, P. Fazli, S. Liu, T. Pereira, D. Lu, J. Liu, M. Veloso, X. Chen, in Proceedings of ICSR’16, the International Conference on Social Robots. Help me! sharing of instructions between remote and heterogeneous robots (Limassol, 2016), pp. 786–795. https://doi.org/10.1007/978-3-319-47437-3_77.
|
[5] |
|
[6] |
S. Lemaignan, M. Warnier, E. Sisbot, A. Clodic, R. Alami, Artificial cognition for social human-robot interaction: An implementation. Artificial Intelligence. 247: (2016). https://doi.org/10.1016/j.artint.2016.07.002.
|
[7] |
|
[8] |
M. M. Veloso, The Increasingly Fascinating Opportunity for Human-Robot Interaction: The CoBot Mobile Service Robots. ACM Trans. Hum.-Robot Interact. (2018). https://doi.org/10.1145/3209541.
|
[9] |
|
[10] |
|
[11] |
|
[12] |
M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R. Wheeler, A. Ng, in Proc. of the IEEE Intl. Conf. on Robotics and Automation (ICRA) Workshop on Open Source Robotics. Kobe, (2009).
|
[13] |
P. Doherty, J. J. C. Meyer, in The Goals of Cognition: Essays in honour of Cristiano Castelfranchi, ed. by F. Paglieri, L. Tummolini, R. Falcone, and M. Miceli. On the logic of delegation - relating theory and practice (College Publications, 2012), pp. 467–496.
|
[14] |
T. Hinzmann, T. Stastny, G. Conte, P. Doherty, P. Rudol, M. Wzorek, E. Galceran, R. Siegwart, I. Gilitschenski, in International Symposium on Experimental Robotics. Collaborative 3D reconstruction using heterogeneous uavs: System and experiments (Tokyo, 2016), pp. 43–56. https://doi.org/10.1007/978-3-319-50115-4_5.
|
[15] |
P. Doherty, F. Heintz, D. Landén, in Proceedings of the International conference on principles and practice of multi-agent systems (PRIMA), Lecture Notes in Computer Science, vol. 7057. A distributed task specification language for mixed-initiative delegation (Kuching, 2012), pp. 42–57. https://doi.org/10.1007/978-3-642-25920-3_4.
|
[16] |
|
[17] |
M. Duerst, M. Suignard, RFC 3987: Internationalized Resource Identifiers (IRIs). RFC 3987 (Proposed Standard) (2005). http://www.ietf.org/rfc/rfc3987.txt.
|
[18] |
|
[19] |
|
[20] |
C. Berger, P. Doherty, P. Rudol, M. Wzorek, Hastily formed knowledge networks and distributed situation awareness for collaborative robotics, (2021). Preprint at https://arxiv.org/abs/2103.14078.
|
[21] |
|
[22] |
S. S. Sahoo, W. Halb, S. Hellmann, K. Idehen, T. Thibodeau, S. Auer, J. Sequeda, A. Ezzat, A survey of current approaches for mapping of relational databases to RDF. Tech. rep., W3C RDB2RDF Incubator Group Report, (2009).
|
[23] |
C. Stadler, J. Unbehauen, P. Westphal, M. A. Sherif, J. Lehmann, in Proceedings of the 8th Workshop on Linked Data on the Web (LDOW). Simplified RDB2RDF mapping (Rio de Janeiro, 2015).
|
[24] |
|
[25] |
|
[26] |
C. Schlenoff, E. Prestes, R. Madhavan, P. Goncalves, H. Li, S. Balakirsky, T. Kramer, E. Migueláñez, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. An ieee standard ontology for robotics and automation (Vilamoura, 2012), pp. 1337–1342. https://doi.org/10.1109/IROS.2012.6385518.
|
[27] |
M. Wylot, M. Hauswirth, P. Cudré-Mauroux, S. Sakr, Rdf data storage and query processing schemes: A survey. ACM Comput. Surv.51(4) (2018). https://doi.org/10.1145/3177850.
|
[28] |
A. Seaborne, A. Polleres, L. Feigenbaum, G. T. Williams, SPARQL 1.1 federated query. recommendation, World Wide Web Consortium (W3C), (Cambridge, 2013). https://www.w3.org/TR/sparql11-federated-query/.
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
E. Sirin, B. Parsia, in Proceedings of the 3rd International Workshop on OWL: Experiences and Directions. SPARQL-DL: SPARQL query for OWL DL (Innsbruck, 2007).
|
[38] |
S. Poslad, Specifying protocols for multi-agent systems interaction. ACM Trans. Auton. Adaptive Syst. (TAAS). 2(4) (2007). https://doi.org/10.1145/1293731.1293735.
|
[39] |
|
[40] |
|
[41] |
J. R. Chen, S. R. Wolfe, S. D. Wragg, in Proceedings of the Ninth International Conference on Information and Knowledge Management. A distributed multi-agent system for collaborative information management and sharing (McLean, 2000), pp. 382–388. https://doi.org/10.1145/354756.354844.
|
[42] |
|
[43] |
G. Bent, P. Dantressangle, D. Vyvyan, A. Mowshowitz, V. Mitsou, in Proceedings of the 2nd Annual Conference of the International Technology Alliance. A dynamic distributed federated database (London, 2008).
|
[44] |
|
[45] |
|
[46] |
J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E. Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, D. Woodford, Spanner: Google’s globally distributed database. ACM Trans. Comput. Syst.31(3) (2013). https://doi.org/10.1145/2491245.
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
F. Baader, D. Calvanese, D. Mcguinness, D. Nardi, P. Patel-Schneider, The Description Logic Handbook: Theory, Implementation, and Applications, 2edn. (Cambridge University Press, 2007). https://doi.org/10.1017/CBO9780511711787.
|
[54] |
|
[55] |
S. Lemaignan, R. Ros, L. Mösenlechner, R. Alami, M. Beetz, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Oro, a knowledge management platform for cognitive architectures in robotics (Taipei, 2010), pp. 3548–3553. https://doi.org/10.1109/IROS.2010.5649547.
|
[56] |
|
[57] |
|
[58] |
J. Persson, A. Gallois, A. Bjoerkelund, L. Hafdell, M. Haage, J. Malec, K. Nilsson, P. Nugues, in International Symposium on Robotics (ISR). A knowledge integration framework for robotics (Munich, 2010), pp. 1–8.
|
[59] |
|
[60] |
J. L. Carbonera, S. R. Fiorini, E. Prestes, V. A. M. Jorge, M. Abel, R. Madhavan, A. Locoro, P. Gonçalves, T. Haidegger, M. E. Barreto, C. Schlenoff, in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Defining positioning in a core ontology for robotics (Tokyo, 2013), pp. 1867–1872. https://doi.org/10.1109/IROS.2013.6696603.
|
[61] |
C. Schlenoff, T. Hong, C. Liu, R. Eastman, S. Foufou, in Proceedings of the IEEE International Symposium on Robotic and Sensors Environments (ROSE). A literature review of sensor ontologies for manufacturing applications, (2013), pp. 96–101. https://doi.org/10.1109/ROSE.2013.6698425.
|
[62] |
|
[63] |
|
[64] |
M. Beetz, D. Beßler, A. Haidu, M. Pomarlan, A. Bozcuoglu, G. Bartels, in 2018 IEEE International Conference on Robotics and Automation (ICRA). Know rob 2.0 — a 2nd generation knowledge processing framework for cognition-enabled robotic agents (Brisbane, 2018), pp. 512–519. https://doi.org/10.1109/ICRA.2018.8460964.
|
[65] |
M. Tenorth, M. Beetz, Representations for robot knowledge in the knowrob framework. Artif. Intell. (2015). https://doi.org/10.1016/j.artint.2015.05.010.
|
[66] |
S. Blumenthal, H. Bruyninckx, W. Nowak, E. Prassler, in 2013 IEEE International Conference on Robotics and Automation (ICRA). A scene graph based shared 3D world model for robotic applications (Karlsruhe, 2013), pp. 453–460. https://doi.org/10.1109/icra.2013.6630614.
|
[67] |
S. Blumenthal, N. Hochgeschwender, E. Prassler, H. Voos, H. Bruyninckx, in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). An approach for a distributed world model with QoS-based perception algorithm adaptation (Hamburg, p. 2015. https://doi.org/10.1109/iros.2015.7353612.
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
A. Cunningham, K. M. Wurm, W. Burgard, F. Dellaert, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Fully distributed scalable smoothing and mapping with robust multi-robot data associationSaint Paul, 2012). https://doi.org/10.1109/ICRA.2012.6225356.
|
[73] |
T. Cieslewski, S. Lynen, M. Dymczyk, R. Siegwart, in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA). Map API - scalable decentralized map building for robots (Seattle, 2015), pp. 6241–6247. https://doi.org/10.1109/ICRA.2015.7140075.
|
[74] |
R. Vincent, D. Fox, J. Ko, K. Konolige, B. Limketkai, B. Morisset, C. Ortiz, D. Schulz, B. Stewart, Distributed multirobot exploration, mapping, and task allocation. Ann. Math. Artif. Intell. (2008). https://doi.org/10.1007/s10472-009-9124-y.
|
[75] |
|
[76] |
|
[77] |
F. Poux, P. Hallot, R. Neuville, R. Billen, in 3D Geoinfo Conference. Model for semantically rich point cloud data (Melbourne, 2017). https://doi.org/10.5194/isprs-annals-iv-4-w5-107-2017.
|
[78] |
|
[79] |
J. I. Meguro, K. Ishikawa, T. Hashizume, J. Takiguchi, I. Noda, M. Hatayama, in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Disaster information integration into geographic information system using rescue robots (Beijing, 2006). https://doi.org/10.1109/IROS.2006.281636.
|
[80] |
|
[81] |
T. Foote, in 2013 IEEE Conference on Technologies for Practical Robot Applications (TePRA). tf: The transform library (Woburn, 2013), pp. 1–6. https://doi.org/10.1109/TePRA.2013.6556373.
|
[82] |
|
[83] |
|
[84] |
P. Ramsey, in FOSS4G. Lidar in postgresql with pointcloud (Nottingham, 2013).
|
/
〈 | 〉 |