Autonomous vehicles for micro-mobility
Henrik Christensen, David Paz, Hengyuan Zhang, Dominique Meyer, Hao Xiang, Yunhai Han, Yuhan Liu, Andrew Liang, Zheng Zhong, Shiqi Tang
Autonomous vehicles for micro-mobility
Autonomous vehicles have been envisioned for more than 100 years. One of the first suggestions was a front cover of Scientific America back in 1916. Today, it is possible to get cars that drive autonomously for extended distances. We are also starting to see micro-mobility solutions, such as the Nuro vehicles for pizza delivery. Building autonomous cars that can operate in urban environments with a diverse set of road-users is far from trivial. Early 2018 the Contextual Robotics Institute at UC San Diego launched an effort to build a full stack autonomous vehicle for micro-mobility. The motivations were diverse: i) development of a system for operation in an environment with many pedestrians, ii) design of a system that does not rely on dense maps (or HD-maps as they are sometimes named), iii) design strategies to build truly robust systems, and iv) a framework to educate next-generation engineers. In this paper, we present the research effort of design, prototyping, and evaluation of such a vehicle. From the evaluation, several research directions are explored to account for shortcomings. Lessons and issues for future work are additionally drawn from this work.
Autonomous vehicles / Intelligent systems / Micro-mobility
[1] |
E. D. Dickmanns, A. Zapp, in Mobile Robots, SPIE, 727, ed. by Wolfe W.J., Marquina N.A Curvature-based Scheme for Improving Road Vehicle Guidance by Computer Vision (Bellingham, 1987), pp. 161–168.
|
[2] |
|
[3] |
|
[4] |
B. Marr, Key milestones of Waymo - Google’s self-driving cars (2018). https://forbes.com/sites/bernardmarr/2018/09/21/key-milestones-of-waymo-googles-self-driving-cars. Accessed 02 Oct 2021.
|
[5] |
I. Bonifacic, Toyota is developing autonomous taxis with help from Aurora (2021). Engadget. https://www.engadget.com/toyota-aurora-denso-autonomous-vehicle-partnership-191500404.html. Accessed 02 Oct 2021.
|
[6] |
A. Palmer, Amazon Zoox unveils self-driving robotaxi (2020). CNBC, https://cnbc.com/2020/12/14/amazons-self-driving-company-zoox-unveils-autonomous-robotaxi.html. Accessed 02 Oct 2021.
|
[7] |
A. Adler, Aurora closes in on production version of self-driving truck technology (2021). FreightWaves, https://www.freightwaves.com/?p=358829. Accessed 02 Oct 2021.
|
[8] |
Baidu-Apollo-team, Apollo: Open source autonomous driving (2017). https://github.com/ApolloAuto/apollo. Accessed 02 Oct 2021.
|
[9] |
|
[10] |
D. Paz, P. -J. Lai, S. Harish, H. Zhang, N. Chan, C. Hu, S. Binnani, H. Christensen, in Field and Service Robotics. Lessons learned from deploying autonomous vehicles at UC San Diego (Tokyo, JP, 2019).
|
[11] |
|
[12] |
M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, A. Ng, in ICRA Workshop on Open Source Software, 3. ROS: an open-source Robot Operating System, (2009).
|
[13] |
A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang, O. Beijbom, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). PointPillars: Fast encoders for object detection from point clouds, (2019), pp. 12689–12697. https://doi.org/10.1109/CVPR.2019.01298.
|
[14] |
|
[15] |
|
[16] |
J. Redmon, A. Farhadi, YOLOv3: An Incremental Improvement. ArXiv abs/1804.02767 (2018).
|
[17] |
C. Campos, R. Elvira, J. Rodríguez, J. Montiel, J. D. Tardós, ORB-SLAM3: An accurate open-source library for visual, visual-inertial and multi-map SLAM. ArXiv abs/2007.11898 (2020).
|
[18] |
J. Zhang, S. Singh, in Robotics: Science and Systems. LOAM: Lidar odometry and mapping in real-time, (2014).
|
[19] |
M. Magnusson, The three-dimensional normal-distributions transform — an efficient representation for registration, surface analysis, and loop detection. PhD dissertation, Örebro universitet (2009).
|
[20] |
R. B. Rusu, S. Cousins, in IEEE International Conference on Robotics and Automation (ICRA). 3D is here: Point Cloud Library (PCL) (Shanghai, China, 2011).
|
[21] |
H. Caesar, V. Bankiti, A. H. Lang, S. Vora, V. E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, O. Beijbom, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). nuScenes: A multimodal dataset for autonomous driving, (2020). https://doi.org/10.1109/CVPR42600.2020.01164.
|
[22] |
C. Ming-Fang, L. John, S. Patsorn, S. Jagjeet, B. Slawomir, H. Andrew, D. Wang, C. Peter, L. Simon, R. Deva, H. James, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Argoverse: 3D tracking and forecasting with rich maps, (2019), pp. 8740–8749.
|
[23] |
|
[24] |
R. C. Coulter, Implementation of the pure pursuit path tracking algorithm. Tech. rep. Carnegie-Mellon UNIV Pittsburgh PA Robotics INST (1992).
|
[25] |
|
[26] |
A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, A. Alahi, 2018, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Social GAN: Socially Acceptable Trajectories with Generative Adversarial Networks, pp. 2255–2264. https://doi.org/10.1109/CVPR.2018.00240.
|
[27] |
|
[28] |
J. Amirian, J. Hayet, Pettré J, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Social Ways: Learning multi-modal distributions of pedestrian trajectories with GANs, (2019), pp. 2964–2972.
|
[29] |
A. Sadeghian, V. Kosaraju, A. Sadeghian, N. Hirose, H. Rezatofighi, S. Savarese, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). SoPhie: An attentive GAN for predicting paths compliant to social and physical constraints, (2019), pp. 1349–1358. https://doi.org/10.1109/CVPR.2019.00144.
|
[30] |
V. Kosaraju, A. Sadeghian, R. Martín-Martín, I. Reid, H. Rezatofighi, S. Savarese, in Advances in Neural Information Processing Systems, Curran Associates, Inc., 32, ed. by H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett. Social-bigat: Multimodal trajectory forecasting using bicycle-gan and graph attention networks, (2019). https://proceedings.neurips.cc/paper/2019/file/d09bf41544a3365a46c9077ebb5e35c3-Paper.pdf.
|
[31] |
T. Salzmann, B. Ivanovic, P. Chakravarty, M. Pavone, Trajectron++: Dynamically-feasible trajectory forecasting with heterogeneous data (2020). https://arxiv.org/pdf/2001.03093.pdf.
|
[32] |
X. Feng, Z. Cen, J. Hu, Y. Zhang, in 2019 IEEE Intelligent Transportation Systems Conference (ITSC). Vehicle trajectory prediction using intention-based conditional variational autoencoder, (2019), pp. 3514–3519. https://doi.org/10.1109/ITSC.2019.8917482.
|
[33] |
A. Mohamed, K. Qian, M. Elhoseiny, C. Claudel, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Social-STGCNN: A social spatio-temporal graph convolutional neural network for human trajectory prediction, (2020), pp. 14412–14420. https://doi.org/10.1109/CVPR42600.2020.01443.
|
[34] |
J. Gao, C. Sun, H. Zhao, Y. Shen, D. Anguelov, C. Li, C. Schmid, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). VectorNet: Encoding hd maps and agent dynamics from vectorized representation, (2020), pp. 11522–11530. https://doi.org/10.1109/CVPR42600.2020.01154.
|
[35] |
A. Ribeiro, L. Dihl, C. Jung, in International Conference on Systems, Signals and Image Processing. Automatic camera calibration for driver assistance systems, (2006), pp. 173–176.
|
[36] |
|
[37] |
|
[38] |
|
[39] |
Y. Wu, A. Kirillov, F. Massa, W. -Y. Lo, R. Girshick, Detectron2 (2019). https://github.com/facebookresearch/detectron2. Accessed 02 Oct 2019.
|
[40] |
|
[41] |
K. He, G. Gkioxari, P. Dollár, R. Girshick, in 2017 IEEE International Conference on Computer Vision (ICCV). Mask R-CNN, (2017), pp. 2980–2988. https://doi.org/10.1109/ICCV.2017.322.
|
[42] |
|
[43] |
Y. Han, Y. Liu, D. Paz, H. Christensen, Auto-calibration method using stop signs for urban autonomous driving applications. ArXiv abs/2010.07441 (2021). https://doi.org/2010.07441.
|
[44] |
|
[45] |
J. Kümmerle, T. Kühner, in 2020 IEEE International Conference on Robotics and Automation (ICRA). Unified intrinsic and extrinsic camera and LiDAR calibration under uncertainties, (2020), pp. 6028–6034. https://doi.org/10.1109/ICRA40945.2020.9197496.
|
[46] |
A. Dhall, K. Chelani, V. Radhakrishnan, K. M. Krishna, LiDAR-Camera Calibration using 3D-3D Point correspondences. ArXiv e-prints 1705.09785 (2017).
|
[47] |
S. Mishra, G. Pandey, S. Saripalli, in 2020 IEEE Intelligent Vehicles Symposium (IV). Extrinsic calibration of a 3D-LIDAR and a camera, (2020), pp. 1765–1770.
|
[48] |
|
[49] |
R. B. Rusu, Semantic 3D object maps for everyday manipulation in human living environments. PhD thesis, Computer Science department, Technische Universitaet Muenchen, Germany (2009).
|
[50] |
T. Yin, X. Zhou, P. Krähenbühl, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Center-based 3D object detection and tracking, (2021), pp. 11784–11793.
|
[51] |
B. Zhu, Z. Jiang, X. Zhou, Z. Li, G. Yu, Class-balanced grouping and sampling for point cloud 3D object detection. ArXiv abs/1908.09492 (2019).
|
[52] |
|
[53] |
|
[54] |
|
[55] |
Z. Ding, Y. Hu, R. Ge, L. Huang, S. Chen, Y. Wang, J. Liao, 1st place solution for Waymo open dataset challenge - 3D detection and domain adaptation. ArXiv abs/2006.15505 (2020).
|
[56] |
H. Cho, Y. Seo, B. V. K. V. Kumar, R. R. Rajkumar, in 2014 IEEE International Conference on Robotics and Automation (ICRA). A multi-sensor fusion system for moving object detection and tracking in urban driving environments, (2014), pp. 1836–1843. https://doi.org/10.1109/ICRA.2014.6907100.
|
[57] |
C. R. Qi, W. Liu, C. Wu, H. Su, L. J. Guibas, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Frustum PointNets for 3D object detection from RGB-D data, (2018), pp. 918–927. https://doi.org/10.1109/CVPR.2018.00102.
|
[58] |
D. Xu, D. Anguelov, A. Jain, in 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Pointfusion: Deep sensor fusion for 3D bounding box estimation, (2018), pp. 244–253.
|
[59] |
X. Weng, J. Wang, D. Held, K. Kitani, 3D Multi-Object Tracking: A Baseline and New Evaluation Metrics, (2020).
|
[60] |
H. -k Chiu, A. Prioletti, J. Li, J. Bohg, Probabilistic 3d multi-object tracking for autonomous driving. ArXiv abs/2001.05673 (2020).
|
[61] |
D. Paz, P. J. Lai, N. Chan, Y. Jianf, H. I. Christensen, Probabilistic semantic mapping for urban autonomous driving applications (IEEE, 2020).
|
[62] |
N. Homayounfar, W. C. Ma, J. Liang, X. Wu, J. Fan, R. Urtasun, in Proceedings of the IEEE/CVF International Conference on Computer Vision. Dagmapper: Learning to map by discovering lane topology, (2019), pp. 2911–2920.
|
[63] |
N. Homayounfar, W. -C. Ma, S. K. Lakshmikanth, R. Urtasun, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Hierarchical recurrent attention networks for structured online maps, (2018), pp. 3417–3426.
|
[64] |
S. Sengupta, P. Sturgess, L. Ladickỳ, P. H. Torr, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Automatic dense visual semantic mapping from street-level imagery (IEEE, 2012), pp. 857–862.
|
[65] |
S. Sengupta, E. Greveson, A. Shahrokni, P. H. Torr, in 2013 IEEE International Conference on robotics and Automation. Urban 3D semantic modelling using stereo vision (IEEE, 2013), pp. 580–585.
|
[66] |
T. Westfechtel, K. Ohno, R. P. B. Neto, S. Kojima, S. Tadokoro, in 2019 IEEE Intelligent Transportation Systems Conference (ITSC). Fusion of camera and lidar data for large scale semantic mapping (IEEE, 2019), pp. 257–264.
|
[67] |
L. -C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, in Computer Vision - ECCV 2018. Lecture Notes in Computer Science, 11211, ed. by V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss. Encoder-decoder with atrous separable convolution for semantic image segmentation (Springer, 2018).
|
[68] |
S. Hecker, D. Dai, L. Van Gool, in Proceedings of the european conference on computer vision (ECCV). End-to-end learning of driving models with surround-view cameras and route planners, (2018), pp. 435–453.
|
[69] |
A. Amini, G. Rosman, S. Karaman, D. Rus, in 2019 International Conference on Robotics and Automation (ICRA). Variational end-to-end navigation and localization (IEEE, 2019), pp. 8958–8964.
|
[70] |
D. Paz, H. Zhang, H. I. Christensen, TridentNet: A conditional generative model for dynamic trajectory generation, (Singapore, 2021).
|
[71] |
|
[72] |
|
[73] |
T. Yang, Z. Nan, H. Zhang, S. Chen, N. Zheng, in 2020 IEEE Intelligent Vehicles Symposium (IV). Traffic agent trajectory prediction using social convolution and attention mechanism (IEEE, 2020), pp. 278–283.
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
P. Daruthep, N. Sutthisangiam, in 2020 22nd International Conference on Advanced Communication Technology (ICACT). Development of automated processing for high-definition mapping system (IEEE, 2020), pp. 507–510.
|
[80] |
A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, in Proceedings of the 1st Annual Conference on Robot Learning. CARLA: An open urban driving simulator, (2017), pp. 1–16.
|
[81] |
G. Rong, B. Shin, H. Tabatabaee, Q. Lu, S. Lemke, M. Mozeiko, E. Boise, G. Uhm, M. Gerow, S. Mehta, E. Agafonov, T. H. Kim, E. Sterner, K. Ushiroda, M. Reyes, D. Zelenkovsky, S. Kim, in 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC). LGSVL Simulator: A high fidelity simulator for autonomous driving, (2020), pp. 1–6.
|
/
〈 | 〉 |