AI art in architecture
Joern Ploennigs, Markus Berger
AI in Civil Engineering ›› 2023, Vol. 2 ›› Issue (1) : 8.
AI art in architecture
Recent diffusion-based AI art platforms can create impressive images from simple text descriptions. This makes them powerful tools for concept design in any discipline that requires creativity in visual design tasks. This is also true for early stages of architectural design with multiple stages of ideation, sketching and modelling. In this paper, we investigate how applicable diffusion-based models already are to these tasks. We research the applicability of the platforms Midjourney, DALL
Image generation / Diffusion models / Natural language processing / Architecture
[1] |
Borji, A. (2022). Generated faces in the wild: Quantitative comparison of stable diffusion, midjourney and DALL-E 2. arXiv preprint http://arxiv.org/abs/2210.00586.
|
[2] |
|
[3] |
|
[4] |
Ho, J., Salimans, T., Gritsenko, A.A., Chan, W., Norouzi, M., & Fleet, D.J. (2022). Video diffusion models. ICLR workshop on deep generative models for highly structured data.
|
[5] |
Kawar, B., Zada, S., Lang, O., Tov O, Chang, H., Dekel, T., Mosseri, I., & Irani, M. (2022). Imagic: Text-based real image editing with diffusion models. arXiv preprint http://arxiv.org/abs/2210.09276.
|
[6] |
Lugmayr, A., Danelljan, M., Romero, A., Yu, F., Timofte, R., & Van Gool, L. (2022). Repaint: Inpainting using denoising diffusion probabilistic models. CVPR (pp. 11461–11471).
|
[7] |
Luo, S., & Hu, W. (2021). Diffusion probabilistic models for 3D point cloud generation. CVPR (pp. 2837–2845).
|
[8] |
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. Nips (Vol. 26).
|
[9] |
Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin, P., McGrew, B., Sutskever, I., & Chen, M. (2022). Glide: Towards photorealistic image generation and editing with text-guided diffusion models. ICML.
|
[10] |
Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G. (2021). Learning transferable visual models from natural language supervision. ICML (pp. 8748–8763).
|
[11] |
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., & Chen, M. (2022). Hierarchical text-conditional image generation with CLIP latents. arXiv preprint http://arxiv.org/abs/2204.06125.
|
[12] |
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., & Ommer, B. (2022, June). High-resolution image synthesis with latent diffusion models. CVPR (p. 10684–10695).
|
[13] |
Saharia, C., Chan, W., Chang, H., Lee, C., Ho, J., Salimans, T., Fleet, D., & Norouzi, M. (2022). Palette: Image-to-image diffusion models. ACM SIGGRAPH (pp. 1–10).
|
[14] |
Saharia, C., Ho, J., Chan, W., Salimans, T., Fleet, D.J., & Norouzi, M. (2022). Image super-resolution via iterative refinement. IEEE Transactions on Pattern Analysis and Machine Intelligence.
|
[15] |
Seneviratne, S., Senanayake, D., Rasnayaka, S., Vidanaarachchi, R., & Thompson, J. (2022). DALLE-URBAN: Capturing the urban design expertise of large text to image transformers. International Conference on Digital Image Computing: Techniques and Applications.
|
[16] |
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015). Deep unsupervised learning using nonequilibrium thermodynamics. ICML (pp. 2256–2265).
|
[17] |
Tevet, G., Raab, S., Gordon, B., Shafir, Y., Cohen-Or, D., & Bermano, A.H. (2022). Human motion diffusion model. arXiv preprint http://arxiv.org/abs/2209.14916.
|
[18] |
Zeng, X., Vahdat, A., Williams, F., Gojcic, Z., Litany, O., Fidler, S., & Kreis, K. (2022). LION: Latent point diffusion models for 3D shape generation.
|
[19] |
Zhou, L., Du, Y., & Wu, J. (2021). 3D shape generation and completion through point-voxel diffusion. CVPR (pp. 5826–5835).
|
/
〈 |
|
〉 |