Automated monitoring and warning solution for concrete placement and vibration workmanship quality issues
Sanggyu Lee , Miroslaw J. Skibniewski
AI in Civil Engineering ›› 2022, Vol. 1 ›› Issue (1) : 4
Automated monitoring and warning solution for concrete placement and vibration workmanship quality issues
Placing and vibrating concrete are vital activities that affect its quality. The current monitoring method relies on visual and time-consuming feedbacks by project managers, which can be subjective. With this method, poor workmanship cannot be detected well on the spot; rather, the concrete is inspected and repaired after it becomes hardened. To address the problems of retroactive quality control measures and to achieve real-time quality assurance of concrete operations, this paper presents a monitoring and warning solution for concrete placement and vibration workmanship quality. Specifically, the solution allows for collecting and compiling real-time sensor data related to the workmanship quality and can send alerts to project managers when related parameters are out of the required ranges. This study consists of four steps: (1) identifying key operational factors (KOFs) which determine acceptable workmanship of concrete work; (2) reviewing and selecting an appropriate positioning technology for collecting the data of KOFs; (3) designing and programming modules for a solution that can interpret the positioning data and send alerts to project managers when poor workmanship is suspected; and (4) testing the solution at a certain construction site for validation by comparing the positioning and warning data with a video record. The test results show that the monitoring performance of concrete placement is accurate and reliable. Follow-up studies will focus on developing a communication channel between the proposed solution and concrete workers, so that feedbacks can be directly delivered to them.
/
| 〈 |
|
〉 |