Spontaneous hierarchical surface engineering of minerals through coupled dissolution-precipitation chemistry

Jinyang Jiang, Jiawen Zhang, Lanxin Wang, Zeyu Lu, Fengjuan Wang, Zhiyong Liu, Hongbo Zeng

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 452. DOI: 10.1002/agt2.452
RESEARCH ARTICLE

Spontaneous hierarchical surface engineering of minerals through coupled dissolution-precipitation chemistry

Author information +
History +

Abstract

Peculiar hierarchical microstructures in creatures inspire modern material design with distinct functionalities. Creatures can effortlessly construct sophisticated yet long-range ordered microstructure across bio-membrane through ion secretion and precipitation. However, microstructure biomimicry in current technology generally requires elaborate, point-by-point fabrication. Herein, a spontaneous yet controllable strategy is developed to achieve surface microstructure engineering through a natural surface phenomenon similar to ion secretion-precipitation, that is, coupled dissolution-precipitation. A series of hierarchical microstructures on mineral surfaces in fluids with tunable morphology, orientation, dimension, and spatial distribution are achieved by simply controlling initial dissolution and fluid chemistry. In seawater, long-range ordered film of vertically aligned brucite flakes forms through interfacial dissolution, nucleation, and confinement-induced orientation of flakes with vertically grown {110} plane, on the edge of which, fusiform aragonite epitaxially precipitates. With negligible initial surface dissolution, prismatic aragonite epitaxially grows on a calcite polyhedron-packed surface. By tuning fluid chemistry, closely packed calcite polyhedron and loosely packed calcite micro-pillars are engineered through rapid and retarded precipitation, respectively. Surprisingly, the spontaneously grown microstructures resemble those deliberately created by human or found in nature, and tremendously modulate surface functionality. These findings open new possibilities for facile and customizable engineering of microstructural surfaces, hierarchical heterostructures, and biomimetic materials.

Keywords

directional crystallization / dissolution-precipitation chemistry / hierarchical microstructures / spontaneous growth / surface engineering

Cite this article

Download citation ▾
Jinyang Jiang, Jiawen Zhang, Lanxin Wang, Zeyu Lu, Fengjuan Wang, Zhiyong Liu, Hongbo Zeng. Spontaneous hierarchical surface engineering of minerals through coupled dissolution-precipitation chemistry. Aggregate, 2024, 5(1): 452 https://doi.org/10.1002/agt2.452

References

[1]
L. Wang, C. V. Putnis, Acc. Chem. Res. 2020, 53, 1196.
CrossRef Google scholar
[2]
A. Rao, S. C. Ayirala, M. B. Alotaibi, M. H. G. Duits, A. A. Yousef, F. Mugele, Adv. Funct. Mater. 2021, 31, 2106396.
[3]
M. Konrad-Schmolke, R. Halama, R. Wirth, A. Thomen, N. Klitscher, L. Morales, A. Schreiber, F. D. H. Wilke, Nat. Commun. 2018, 9, 1637.
CrossRef Google scholar
[4]
Y. Li, H. Pan, Q. Liu, X. Ming, Z. Li, Nat. Commun. 2022, 13, 1253.
[5]
L. Spruzeniece, S. Piazolo, H. E. Maynard-Casely, Nat. Commun. 2017, 8, 14032.
CrossRef Google scholar
[6]
N. A. Alcantar, J. Jimenez, D. Morgan, Alzheimer’s Dementia 2010, 6, S247.
[7]
O. H. Shapiro, E. Kramarsky-Winter, A. R. Gavish, R. Stocker, A. Vardi, Nat. Commun. 2016, 7, 10860.
[8]
W. Sun, S. Jayaraman, W. Chen, K. A. Persson, G. Ceder, Proc. Natl. Acad. Sci. U. S. A. 2015, 112, 3199.
CrossRef Google scholar
[9]
R. Xu, M. Hua, S. Wu, S. Ma, Y. Zhang, L. Zhang, B. Yu, M. Cai, X. He, F. Zhou, Matter 2022, 5, 634.
CrossRef Google scholar
[10]
C. Sun, G. E. Fantner, J. Adams, P. K. Hansma, J. H. Waite, J. Exp. Biol. 2007, 210, 1481.
CrossRef Google scholar
[11]
O. H. Shapiro, E. Kartvelishvily, E. Kramarsky-Winter, A. Vardi, Front. Mar. Sci. 2018, 5, 246.
[12]
A. Meibom, J.-P. Cuif, F. Hillion, B. R. Constantz, A. Juillet-Leclerc, Y. Dauphin, T. Watanabe, R. B. Dunbar, Geophys. Res. Lett. 2004, 31, L23306.
[13]
E. R. M Druffel, Proc. Natl. Acad. Sci. U. S. A. 1997, 94, 8354.
CrossRef Google scholar
[14]
A. Fougerouse, M. Rousseau, J. S. Lucas, in The Pearl Oyster (Eds: P. C. Southgate, J. S. Lucas,), Elsevier, London 2008, Ch.3.
[15]
P. Zhang, J. Li, L. Lv, Y. Zhao, L. Qu, ACS Nano 2017, 11, 5087.
CrossRef Google scholar
[16]
Y. Lei, S. Yang, M. Wu, G. Wilde, Chem. Soc. Rev. 2011, 40, 1247.
CrossRef Google scholar
[17]
W. Wang, S. J. Chen, W. Chen, W. Duan, J. Z. Lai, K. Sagoe-Crentsil, Nat. Commun. 2022, 13, 1289.
[18]
W. Xu, Y. Jin, W. Li, Y. Song, S. Gao, B. Zhang, L. Wang, M. Cui, X. Yan, Z. Wang, Sci. Adv. 2022, 8, eade2085.
[19]
B. Li, B. Yu, W. T. S. Huck, W. Liu, F. Zhou, J. Am. Chem. Soc. 2013, 135, 1708.
CrossRef Google scholar
[20]
Z. Li, X. Zhou, H. Ma, D. Hou, Advanced Concrete Technology, Wiley, Hoboken, NJ 2022.
[21]
M. P. C. P. E. Moses, IOSR J.Mech. Civ. Eng. 2019, 16, 31.
[22]
S. Garrault, A. Nonat, Langmuir 2001, 17, 8131.
CrossRef Google scholar
[23]
I. S. S Carrasco, F. D. A. Aarão Reis, Geochim. Cosmochim. Acta 2021, 292, 271.
CrossRef Google scholar
[24]
L. de Ruiter, A. E. Gunnæs, D. K. Dysthe, H. Austrheim, Solid Earth 2021, 12, 389.
CrossRef Google scholar
[25]
M. V. Rapp, G. P. Maier, H. A. Dobbs, N. J. Higdon, J. H. Waite, A. Butler, J. N. Israelachvili, J. Am. Chem. Soc. 2016, 138, 9013.
CrossRef Google scholar
[26]
T. Watari, Z. Cao, S. Hata, K. Nansai, Nat. Commun. 2022, 13, 4158.
[27]
I. H. Shah, S. A. Miller, D. Jiang, R. J. Myers, Nat. Commun. 2022, 13, 5758.
[28]
F. Basquiroto de Souza, K. Sagoe-Crentsil, W. Duan, J. Am. Ceram. Soc. 2022, 105, 3081.
CrossRef Google scholar
[29]
W.-J. Long, J.-L. Tao, C. Lin, Y.-c. Gu, L. Mei, H.-B. Duan, F. Xing, J. Cleaner Prod. 2019, 239, 118054.
CrossRef Google scholar
[30]
Y. Yi, D. Zhu, S. Guo, Z. Zhang, C. Shi, Cem. Concr. Compos. 2020, 113, 103695.
CrossRef Google scholar
[31]
K. Li, D. Zhang, Q. Li, Z. Fan, Cem. Concr. Res. 2019, 115, 545.
CrossRef Google scholar
[32]
L. Lv, B. Šavija, L. Li, H. Cui, N. Han, F. Xing, Cem. Concr. Res. 2021, 144, 106423.
CrossRef Google scholar
[33]
C. Al Akoumy, A. Augé, D. Ma, Y. Zhao, ACS Appl. Nano Mater. 2022, 5, 18237.
CrossRef Google scholar
[34]
S. J. Chen, Q. Zhang, H. D. Nguyen, Y. Ren, Y. Liu, W. Wang, W. Gao, J. Ren, K. Sagoe-Crentsil, W. Duan, Nano Energy 2022, 99, 107415.
CrossRef Google scholar
[35]
N. A. Alcantar, S. Banta, A. D. Cak, X. Chen, C. DelRe, L. F. Deravi, J. S. Dordick, B. M. Giebel, D. Greenfield, P. M. Groffman, M. Holford, G. John, N. S. Joshi, N. A. Kotov, J. K. Montclare, B. S. Moore, J. H. Ortony, A. B. Reinmann, J. Son, R. E. Stark, R. V. Ulijn, C. J. Vörösmarty, C. J. Wilson, Matter 2022, 5, 1980.
CrossRef Google scholar
[36]
K. De Weerdt, H. Justnes, M. R. Geiker, Cem. Concr. Compos. 2014, 47, 53.
CrossRef Google scholar
[37]
U. H. Jakobsen, K. De Weerdt, M. R. Geiker, Cem. Concr. Res. 2016, 85, 12.
CrossRef Google scholar
[38]
N. R. Buenfeld, J. B. Newman, Cem. Concr. Res. 1986, 16, 721.
CrossRef Google scholar
[39]
Y. Xia, T. S. Mathis, M.-Q. Zhao, B. Anasori, A. Dang, Z. Zhou, H. Cho, Y. Gogotsi, S. Yang, Nature 2018, 557, 409.
CrossRef Google scholar
[40]
D. V. Erler, H. T. Farid, T. D. Glaze, N. L Carlson-Perret, J. M. Lough, Nat. Commun. 2020, 11, 1500.
[41]
Y. Lu, H. Zhang, Y. Wang, X. Zhu, W. Xiao, H. Xu, G. Li, Y. Li, D. Fan, H. Zeng, Z. Chen, X. Yang, Adv. Funct. Mater. 2023, 33, 2215061.
[42]
J. Billaud, F. Bouville, T. Magrini, C. Villevieille, A. R. Studart, Nat. Energy 2016, 1, 16097.
[43]
H. Yu, D. Wang, H. Jin, P. Wu, X. Wu, D. Chu, Y. Lu, X. Yang, H. Xu, Adv. Funct. Mater. 2023, 33, 2214828.
[44]
K. Yin, B. A. Reese, C. R. Sullivan, U. G. K. Wegst, Adv. Funct. Mater. 2021, 31, 2007743.
[45]
K. A. Rodgers, S. F. Courtney, Mineral. Mag. 1988, 52, 411.
CrossRef Google scholar
[46]
L. D. Nothdurft, G. E. Webb, N. A. Buster, C. W. Holmes, J. E. Sorauf, J. T. Kloprogge, Geology 2005, 33, 169.
CrossRef Google scholar
[47]
N. A. Buster, C. W. Holmes, Coral Reefs 2006, 25, 243.
CrossRef Google scholar
[48]
J. W. Mullin, Org. Process Res. Dev. 2002, 6, 201.
[49]
S. J. Mills, A. G. Christy, J. M. R. Génin, T. Kameda, F. Colombo, Mineral. Mag. 2012, 76, 1289.
CrossRef Google scholar
[50]
R. Cheng, M. Xu, X. Zhang, J. Jiang, Q. Zhang, Y. Zhao, Angew. Chem. Int. Ed. 2023, 62, e202302900.
[51]
Z. Lin, A. Yin, J. Mao, Y. Xia, N. Kempf, Q. He, Y. Wang, C.-Y. Chen, Y. Zhang, V. Ozolins, Z. Ren, Y. Huang, X. Duan, Sci. Adv. 2016, 2, e1600993.
[52]
X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, H. Zhang, Nat. Commun. 2013, 4, 1444.
[53]
J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, R. Ramesh, Science 2003, 299, 1719.
CrossRef Google scholar
[54]
J. Park, H. Zheng, Y.-w. Jun, A. P. Alivisatos, J. Am. Chem. Soc. 2009, 131, 13943.
CrossRef Google scholar
[55]
M. Zhao, J. Chen, B. Chen, X. Zhang, Z. Shi, Z. Liu, Q. Ma, Y. Peng, C. Tan, X.-J. Wu, H. Zhang, J. Am. Chem. Soc. 2020, 142, 8953.
CrossRef Google scholar
[56]
J. Chen, X.-J. Wu, Y. Gong, Y. Zhu, Z. Yang, B. Li, Q. Lu, Y. Yu, S. Han, Z. Zhang, Y. Zong, Y. Han, L. Gu, H. Zhang, J. Am. Chem. Soc. 2017, 139, 8653.
CrossRef Google scholar
[57]
F. Nudelman, E. Shimoni, E. Klein, M. Rousseau, X. Bourrat, E. Lopez, L. Addadi, S. Weiner, J. Struct. Biol. 2008, 162, 290.
CrossRef Google scholar
[58]
J. Gim, N. Schnitzer, L. M. Otter, Y. Cui, S. Motreuil, F. Marin, S. E. Wolf, D. E. Jacob, A. Misra, R. Hovden, Nat. Commun. 2019, 10, 4822.
[59]
L.-B. Mao, Y.-F. Meng, X.-S. Meng, B. Yang, Y.-L. Yang, Y.-J. Lu, Z.-Y. Yang, L.-M. Shang, S.-H. Yu, J. Am. Chem. Soc. 2022, 144, 18175.
CrossRef Google scholar
[60]
I. C. Olson, R. Kozdon, J. W. Valley, P. U. P. A. Gilbert, J. Am. Chem. Soc. 2012, 134, 7351.
CrossRef Google scholar
[61]
D. Wang, A. F. Wallace, J. J. De Yoreo, P. M. Dove, Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 21511.
CrossRef Google scholar
[62]
M. Bruno, M. Prencipe, D. Aquilano, A. Cotellucci, S. Ghignone, P. Németh, J. Phys. Chem. C 2022, 126, 6472.
CrossRef Google scholar
[63]
J. L. Wray, F. Daniels, J. Am. Chem. Soc. 1957, 79, 2031.
CrossRef Google scholar
[64]
U. Balthasar, M. Cusack, Geology 2015, 43, 99.
CrossRef Google scholar
[65]
Y. Liu, L. Moevius, X. Xu, T. Qian, J. M. Yeomans, Z. Wang, Nat. Phys. 2014, 10, 515.
CrossRef Google scholar
[66]
T. Watanabe, M. Takizawa, H. Jiang, T. Ngai, D. Suzuki, Chem. Commun. 2019, 55, 5990.
CrossRef Google scholar
[67]
Y. Sheng, K. Lin, B. P. Binks, T. Ngai, J. Colloid Interface Sci. 2020, 579, 628.
CrossRef Google scholar
[68]
A. Tuteja, W. Choi, J. M. Mabry, G. H. McKinley, R. E. Cohen, Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 18200.
CrossRef Google scholar
[69]
Y. Cai, Q. Zhao, X. Quan, W. Feng, Q. Wang, Colloids Surf. 2020, 586, 124189.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by South China University of Technology; AIE Institute and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/