Thin-film flow technology in controlling the organization of materials and their properties

Clarence Chuah , Xuan Luo , Javad Tavakoli , Youhong Tang , Colin L. Raston

Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 433

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) :433 DOI: 10.1002/agt2.433
REVIEW

Thin-film flow technology in controlling the organization of materials and their properties

Author information +
History +
PDF

Abstract

Centrifugal and shear forces are produced when solids or liquids rotate. Rotary systems and devices that use these forces, such as dynamic thin-film flow technology, are evolving continuously, improve material structure-property relationships at the nanoscale, representing a rapidly thriving and expanding field of research high with green chemistry metrics, consolidated at the inception of science. The vortex fluidic device (VFD) provides many advantages over conventional batch processing, with fluidic waves causing high shear and producing large surface areas for micro-mixing as well as rapid mass and heat transfer, enabling reactions beyond diffusion control. Combining these abilities allows for a green and innovative approach to altering materials for various research and industry applications by controlling small-scale flows and regulating molecular and macromolecular chemical reactivity, self-organization phenomena, and the synthesis of novel materials. This review highlights the aptitude of the VFD as clean technology, with an increase in efficiency for a diversity of top-down, bottom-up, and novel material transformations which benefit from effective vortex-based processing to control material structure-property relationships.

Keywords

material / nanoscale / structure-property relationship / thin film flow technology / vortex fluidic device

Cite this article

Download citation ▾
Clarence Chuah, Xuan Luo, Javad Tavakoli, Youhong Tang, Colin L. Raston. Thin-film flow technology in controlling the organization of materials and their properties. Aggregate, 2024, 5(1): 433 DOI:10.1002/agt2.433

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

J.Mei, Y.Hong, J. W. Y.Lam, A. Qin, Y.Tang, B. Z.Tang, Adv. Mater. 2014, 26, 5429.

[2]

J.Jeevanandam, A.Barhoum, Y. S.Chan, A.Dufresne, M. K.Danquah, Beilstein J. Nanotechnol. 2018, 9, 1050.

[3]

K.Ward, Z. H.Fan, J. Micromech. Microeng. 2015, 25, 094001.

[4]

G.Cai, L.Xue, H.Zhang, J. Lin, Micromachines 2017, 8, 274.

[5]

D.Katircioglu-Bayel, Min. Metall. Explor. 2020, 37, 311.

[6]

J.Eckelmann, U.Lüning, J. Chem. Educ. 2013, 90, 224.

[7]

H.Jeong, Y.Lee, M.Ji, G.Lee, H.Chung, J. Mech. Sci. Technol. 2010, 24, 407.

[8]

S. M. TDelgado, D. J.Kinahan, F. S.Sandoval, L. A. N.Julius, N. A.Kilcawley, J.Ducrée, D.Mager, Lab Chip 2016, 16, 4002.

[9]

J. M.Ribó, J. Crusats, F.Sagués, J.Claret, R.Rubires, Sci. 2001, 292, 2063.

[10]

B. A.Grzybowski, Y. I. Sobolev, O.Cybulski, B.Mikulak-Klucznik, Nat. Rev. Mater. 2022, 7, 338.

[11]

K.Vimalanathan, C. L.Raston, Adv. Mater. Technol. 2017, 2, 1600298.

[12]

O.Strohmeier, M.Keller, F.Schwemmer, S.Zehnle, D.Mark, F.von Stetten, R.Zengerle, N.Paust, Chem. Soc. Rev. 2015, 44, 6187.

[13]

R. G.Richards, D. M.MacHunter, P. J.Gates, M. K.Palmer, Miner. Eng. 2000, 13, 65.

[14]

N. C.Jacobsen, O.Hinrichsen, Ind. Eng. Chem. Res. 2012, 51, 11643.

[15]

M.Jellicoe, A.Igder, C.Chuah, D. B. Jones, X.Luo, K. A.Stubbs, E. M.Crawley, S. J.Pye, N.Joseph, K.Vimalananthan, Z.Gardner, D. P.Harvey, X.Chen, F.Salvemini, S. He, W.Zhang, J. M.Chalker, J. S.Quinton, Y.Tang, C. L.Raston, Chem. Sci. 2022, 13, 3375.

[16]

T. Z.Yuan, C. F. G. Ormonde, S. T.Kudlacek, S.Kunche, J. N.Smith, W. A.Brown, K. M. Pugliese, T. J.Olsen, M.Iftikhar, C. L.Raston, G. A.Weiss, ChemBioChem 2015, 16, 393.

[17]

J.Britton, K. A.Stubbs, G. A.Weiss, C. L.Raston, Chem Eur J. 2017, 23, 13270.

[18]

X.Luo, P.Su, W.Zhang, C. L. Raston, Adv. Mater. Technol. 2019, 4, 1900488.

[19]

A. H. M.Al-Antaki, X. Luo, T. M. D.Alharbi, D. P.Harvey, S.Pye, J.Zou, W. Lawrance, C. L.Raston, RSC Adv. 2019, 9, 22074.

[20]

J.Britton, S. B.Dalziel, C. L.Raston, Green Chem. 2016, 18, 2193.

[21]

L.Yasmin, X.Chen, K. A.Stubbs, C. L. Raston, Sci. Rep.2013, 3, 2282.

[22]

S.He, K.Vimalanathan, P.Su, M.Jellicoe, X.Luo, W.Xing, W. Cai, C. T.Gibson, Y.Chen, J. W. C. Wong, W.Zhang, Y.Tang, C. L.Raston, ACS Sustain. Chem. Eng. 2021, 9, 14588.

[23]

K.Vimalanathan, J. R.Gascooke, I.Suarez-Martinez, N. A.Marks, H.Kumari, C. J.Garvey, J. L.Atwood, W. D.Lawrance, C. L.Raston, Sci. Rep. 2016, 6, 22865.

[24]

X.Luo, A. H. M. Al-Antaki, K.Vimalanathan, J.Moffatt, K.Zheng, Y.Zou, J. Zou, X.Duan, R. N.Lamb, S.Wang, L.Qin, W. Zhang, C. L.Raston, React. Chem. Eng. 2018, 3, 164.

[25]

X.Chen, J. F.Dobson, C. L.Raston, Chem. Comm. 2012, 48, 3703.

[26]

J.Britton, L. M.Meneghini, C. L.Raston, G. A.Weiss, Angew. Chem. Int. Ed. 2016, 55, 11387.

[27]

X.Luo, A. H. M. Al-Antaki, A.Igder, K. A.Stubbs, P.Su, W.Zhang, G. A. Weiss, C. L.Raston, ACS Appl. Mater. Interf. 2020, 12, 51999.

[28]

X.Luo, A. H. M. Al-Antaki, S.Pye, R.Meech, W.Zhang, C. L.Raston, ChemPhotoChem 2018, 2, 343.

[29]

X.Luo, P.Smith, C. L.Raston, W. Zhang, ACS Sustain Chem. Eng. 2016, 4, 3905.

[30]

T. M. DAlharbi, M.Jellicoe, X.Luo, K.Vimalanathan, I. K.Alsulami, B. S.Al Harbi, A.Igder, F. A. J. Alrashaidi, X.Chen, K. A.Stubbs, J. M.Chalker, W.Zhang, R. A.Boulos, D. B.Jones, J. S.Quinton, C. L.Raston, Nanoscale Adv. 2021, 3, 3064.

[31]

W.Zhao, M.Fang, F.Wu, H.Wu, L.Wang, G. Chen, J. Mater. Chem. 2010, 20, 5817.

[32]

Y.Hernandez, V.Nicolosi, M.Lotya, F. M.Blighe, Z.Sun, S.De, I. T.McGovern, B.Holland, M.Byrne, Y. K.Gun’Ko, J. J.Boland, P.Niraj, G.Duesberg, S.Krishnamurthy, R.Goodhue, J.Hutchison, V.Scardaci, A. C.Ferrari, J. N.Coleman, Nat. Nanotechnol. 2008, 3, 563.

[33]

U.Khan, HPorwal, A.O’Neill, K.Nawaz, P.May, J. N.Coleman, Langmuir 2011, 27, 9077.

[34]

K.Vimalanathan, J.Scott, X.Pan, X. Luo, S.Rahpeima, Q.Sun, J.Zou, N.Bansal, E. Prabawati, W.Zhang, N.Darwish, M. R.Andersson, Q.Li, C. L.Raston, Nanoscale Adv. 2022, 4, 3121.

[35]

I. K.Alsulam, T. M. D. Alharbi, M.Moussa, C. L.Raston, ACS mega 2019, 4, 19279.

[36]

T. M. DAlharbi, A. E. H. Alotaibi, C. L.Raston, ACS Appl. Nano Mater. 2023, 6, 12507.

[37]

L.Li, L.,Chen, Y.Lu, B.Li, R.Hu, L.Huang, T.Zhang, X. Wei, Z.Yang, C.Mao, Aggregate 2023, 4, e200.

[38]

C.Kang, S.Tao, F.Yang, B. Yang, Aggregate 2022, 3, e169.

[39]

T. M. DAlharbi, K.Vimalanathan, W. D.Lawrance, C. L.Raston, Carbon 2018, 140, 428.

[40]

N.Pierard, A.Fonseca, Z.Konya, I.Willems, G.Van Tendeloo, B. J.Nagy, Chem. Phys. Lett. 2001, 335, 1.

[41]

L. T.Scott, E. A.Jackson, Q.Zhang, B. D.Steinberg, M.Bancu, B.Li, J. Am. Chem. Soc. 2012, 134, 107.

[42]

T. M. DAlharbi, Q.Li, C. L.Raston, ACS Sustain. Chem. Eng. 2021, 9, 16044.

[43]

T. M. DAlharbi, Y.Shingaya, K.Vimalanathan, T.Nakayama, C. L.Raston, ACS Appl. Nano Mater. 2019, 2, 5282.

[44]

M.Jellicoe, C. T.Gibson, J. S.Quinton, C. L.Raston, ACS Appl. Nano Mater. 2022, 5, 11586.

[45]

Thaar M. D.Alharbi, A. H. M. Al-Antaki, M.Moussa, W. D.Hutchison, C. L.Raston, Nanoscale Adv. 2019, 1, 3761.

[46]

C. L.Tong, R. A.Boulos, C.Yu, K. S.Iyer, C. L.Raston, RSC Adv. 2013, 3, 18767.

[47]

C. T.Kresge, M. E.Leonowicz, W. J.Roth, J. C.Vartuli, J. S.Beck, Nature 1992, 359, 710.

[48]

C. L.Tong, E.Eroglu, X.Duan, R. N.Lamb, K.Jarrett, C. E.Buckley, C. L.Raston, RSC Adv. 2015, 5, 20557.

[49]

C. L.Tong, U. H.Stroeher, M. H.Brown, C. L.Raston, RSC Adv. 2015, 5, 7953.

[50]

I. K.Alsulami, T. M. D. Alharbi, D. P.Harvey, C. T.Gibson, C. L.Raston, Chem. Comm. 2018, 54, 7896.

[51]

J.Mo, P. K.Eggers, X.Chen, M. R. H.Ahamed, T.Becker, L. Y.Lim, C. L.Raston, Sci. Rep. 2015, 5, 10414.

[52]

H.Kumari, S. R.Kline, S. R.Kennedy, C.Garvey, C. L.Raston, J. L.Atwood, J. W.Steed, Chem. Comm. 2016, 52, 4513.

[53]

Q.Hu, H.Hu, X.Zhang, K. Fan, Y.Hong, C. L.Raston, Y.Tang, Molecules 2021, 26, 4273.

[54]

M.Kang, Z.Zhang, N.Song, M. Li, P.Sun, X.Chen, D.Wang, B. Z.Tang, Aggregate 2020, 1, 80.

[55]

J.Britton, C. L.Raston, G. A.Weiss, Chem. Comm. 2016, 52, 10159.

[56]

E. K.Sitepu, K.Corbin, X.Luo, S. J.Pye, Y.Tang, S. C.Leterme, K.Heimann, C. L.Raston, W.Zhang, Bioresour. Technol. 2018, 266, 488.

[57]

E. K.Sitepu, D. B.Jones, Y.Tang, S. C. Leterme, K.Heimann, W.Zhang, C. L.Raston, Chem. Comm. 2018, 54, 12085.

[58]

Y.Jiang, T.He, Y.Chen, Y. Ruan, Y.Zhou, B. Z.Tang, J.Qin, Y.Tang, Environ. Sci. Nano 2017, 4, 2186.

[59]

J.Tavakoli, S.Pye, A. H. M. M.Reza, N.Xie, J.Qin, C. L.Raston, B. Z. Tang, Y.Tang, Mater. Chem. Front. 2020, 4, 537.

[60]

S.Behzadi, V.Serpooshan, W.Tao, M. A.Hamaly, M. Y.Alkawareek, E. C.Dreaden, D.Brown, A. M.Alkilany, O. C.Farokhzad, M.Mahmoudi, Chem. Soc. Rev. 2017, 46, 4218.

[61]

J.Tavakoli, N.Joseph, C. L.Raston, Y.Tang, Nanoscale Adv. 2020, 2, 633.

RIGHTS & PERMISSIONS

2023 The Authors. Aggregate published by South China University of Technology; AIE Institute and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

176

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/