Thin-film flow technology in controlling the organization of materials and their properties

Clarence Chuah, Xuan Luo, Javad Tavakoli, Youhong Tang, Colin L. Raston

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 433. DOI: 10.1002/agt2.433
REVIEW

Thin-film flow technology in controlling the organization of materials and their properties

Author information +
History +

Abstract

Centrifugal and shear forces are produced when solids or liquids rotate. Rotary systems and devices that use these forces, such as dynamic thin-film flow technology, are evolving continuously, improve material structure-property relationships at the nanoscale, representing a rapidly thriving and expanding field of research high with green chemistry metrics, consolidated at the inception of science. The vortex fluidic device (VFD) provides many advantages over conventional batch processing, with fluidic waves causing high shear and producing large surface areas for micro-mixing as well as rapid mass and heat transfer, enabling reactions beyond diffusion control. Combining these abilities allows for a green and innovative approach to altering materials for various research and industry applications by controlling small-scale flows and regulating molecular and macromolecular chemical reactivity, self-organization phenomena, and the synthesis of novel materials. This review highlights the aptitude of the VFD as clean technology, with an increase in efficiency for a diversity of top-down, bottom-up, and novel material transformations which benefit from effective vortex-based processing to control material structure-property relationships.

Keywords

material / nanoscale / structure-property relationship / thin film flow technology / vortex fluidic device

Cite this article

Download citation ▾
Clarence Chuah, Xuan Luo, Javad Tavakoli, Youhong Tang, Colin L. Raston. Thin-film flow technology in controlling the organization of materials and their properties. Aggregate, 2024, 5(1): 433 https://doi.org/10.1002/agt2.433

References

[1]
J.Mei, Y.Hong, J. W. Y.Lam, A. Qin, Y.Tang, B. Z.Tang, Adv. Mater. 2014, 26, 5429.
CrossRef Google scholar
[2]
J.Jeevanandam, A.Barhoum, Y. S.Chan, A.Dufresne, M. K.Danquah, Beilstein J. Nanotechnol. 2018, 9, 1050.
CrossRef Google scholar
[3]
K.Ward, Z. H.Fan, J. Micromech. Microeng. 2015, 25, 094001.
CrossRef Google scholar
[4]
G.Cai, L.Xue, H.Zhang, J. Lin, Micromachines 2017, 8, 274.
CrossRef Google scholar
[5]
D.Katircioglu-Bayel, Min. Metall. Explor. 2020, 37, 311.
CrossRef Google scholar
[6]
J.Eckelmann, U.Lüning, J. Chem. Educ. 2013, 90, 224.
CrossRef Google scholar
[7]
H.Jeong, Y.Lee, M.Ji, G.Lee, H.Chung, J. Mech. Sci. Technol. 2010, 24, 407.
CrossRef Google scholar
[8]
S. M. TDelgado, D. J.Kinahan, F. S.Sandoval, L. A. N.Julius, N. A.Kilcawley, J.Ducrée, D.Mager, Lab Chip 2016, 16, 4002.
CrossRef Google scholar
[9]
J. M.Ribó, J. Crusats, F.Sagués, J.Claret, R.Rubires, Sci. 2001, 292, 2063.
CrossRef Google scholar
[10]
B. A.Grzybowski, Y. I. Sobolev, O.Cybulski, B.Mikulak-Klucznik, Nat. Rev. Mater. 2022, 7, 338.
CrossRef Google scholar
[11]
K.Vimalanathan, C. L.Raston, Adv. Mater. Technol. 2017, 2, 1600298.
CrossRef Google scholar
[12]
O.Strohmeier, M.Keller, F.Schwemmer, S.Zehnle, D.Mark, F.von Stetten, R.Zengerle, N.Paust, Chem. Soc. Rev. 2015, 44, 6187.
CrossRef Google scholar
[13]
R. G.Richards, D. M.MacHunter, P. J.Gates, M. K.Palmer, Miner. Eng. 2000, 13, 65.
CrossRef Google scholar
[14]
N. C.Jacobsen, O.Hinrichsen, Ind. Eng. Chem. Res. 2012, 51, 11643.
CrossRef Google scholar
[15]
M.Jellicoe, A.Igder, C.Chuah, D. B. Jones, X.Luo, K. A.Stubbs, E. M.Crawley, S. J.Pye, N.Joseph, K.Vimalananthan, Z.Gardner, D. P.Harvey, X.Chen, F.Salvemini, S. He, W.Zhang, J. M.Chalker, J. S.Quinton, Y.Tang, C. L.Raston, Chem. Sci. 2022, 13, 3375.
CrossRef Google scholar
[16]
T. Z.Yuan, C. F. G. Ormonde, S. T.Kudlacek, S.Kunche, J. N.Smith, W. A.Brown, K. M. Pugliese, T. J.Olsen, M.Iftikhar, C. L.Raston, G. A.Weiss, ChemBioChem 2015, 16, 393.
CrossRef Google scholar
[17]
J.Britton, K. A.Stubbs, G. A.Weiss, C. L.Raston, Chem Eur J. 2017, 23, 13270.
CrossRef Google scholar
[18]
X.Luo, P.Su, W.Zhang, C. L. Raston, Adv. Mater. Technol. 2019, 4, 1900488.
[19]
A. H. M.Al-Antaki, X. Luo, T. M. D.Alharbi, D. P.Harvey, S.Pye, J.Zou, W. Lawrance, C. L.Raston, RSC Adv. 2019, 9, 22074.
CrossRef Google scholar
[20]
J.Britton, S. B.Dalziel, C. L.Raston, Green Chem. 2016, 18, 2193.
CrossRef Google scholar
[21]
L.Yasmin, X.Chen, K. A.Stubbs, C. L. Raston, Sci. Rep.2013, 3, 2282.
[22]
S.He, K.Vimalanathan, P.Su, M.Jellicoe, X.Luo, W.Xing, W. Cai, C. T.Gibson, Y.Chen, J. W. C. Wong, W.Zhang, Y.Tang, C. L.Raston, ACS Sustain. Chem. Eng. 2021, 9, 14588.
CrossRef Google scholar
[23]
K.Vimalanathan, J. R.Gascooke, I.Suarez-Martinez, N. A.Marks, H.Kumari, C. J.Garvey, J. L.Atwood, W. D.Lawrance, C. L.Raston, Sci. Rep. 2016, 6, 22865.
CrossRef Google scholar
[24]
X.Luo, A. H. M. Al-Antaki, K.Vimalanathan, J.Moffatt, K.Zheng, Y.Zou, J. Zou, X.Duan, R. N.Lamb, S.Wang, L.Qin, W. Zhang, C. L.Raston, React. Chem. Eng. 2018, 3, 164.
CrossRef Google scholar
[25]
X.Chen, J. F.Dobson, C. L.Raston, Chem. Comm. 2012, 48, 3703.
CrossRef Google scholar
[26]
J.Britton, L. M.Meneghini, C. L.Raston, G. A.Weiss, Angew. Chem. Int. Ed. 2016, 55, 11387.
CrossRef Google scholar
[27]
X.Luo, A. H. M. Al-Antaki, A.Igder, K. A.Stubbs, P.Su, W.Zhang, G. A. Weiss, C. L.Raston, ACS Appl. Mater. Interf. 2020, 12, 51999.
CrossRef Google scholar
[28]
X.Luo, A. H. M. Al-Antaki, S.Pye, R.Meech, W.Zhang, C. L.Raston, ChemPhotoChem 2018, 2, 343.
CrossRef Google scholar
[29]
X.Luo, P.Smith, C. L.Raston, W. Zhang, ACS Sustain Chem. Eng. 2016, 4, 3905.
CrossRef Google scholar
[30]
T. M. DAlharbi, M.Jellicoe, X.Luo, K.Vimalanathan, I. K.Alsulami, B. S.Al Harbi, A.Igder, F. A. J. Alrashaidi, X.Chen, K. A.Stubbs, J. M.Chalker, W.Zhang, R. A.Boulos, D. B.Jones, J. S.Quinton, C. L.Raston, Nanoscale Adv. 2021, 3, 3064.
CrossRef Google scholar
[31]
W.Zhao, M.Fang, F.Wu, H.Wu, L.Wang, G. Chen, J. Mater. Chem. 2010, 20, 5817.
CrossRef Google scholar
[32]
Y.Hernandez, V.Nicolosi, M.Lotya, F. M.Blighe, Z.Sun, S.De, I. T.McGovern, B.Holland, M.Byrne, Y. K.Gun’Ko, J. J.Boland, P.Niraj, G.Duesberg, S.Krishnamurthy, R.Goodhue, J.Hutchison, V.Scardaci, A. C.Ferrari, J. N.Coleman, Nat. Nanotechnol. 2008, 3, 563.
CrossRef Google scholar
[33]
U.Khan, HPorwal, A.O’Neill, K.Nawaz, P.May, J. N.Coleman, Langmuir 2011, 27, 9077.
CrossRef Google scholar
[34]
K.Vimalanathan, J.Scott, X.Pan, X. Luo, S.Rahpeima, Q.Sun, J.Zou, N.Bansal, E. Prabawati, W.Zhang, N.Darwish, M. R.Andersson, Q.Li, C. L.Raston, Nanoscale Adv. 2022, 4, 3121.
CrossRef Google scholar
[35]
I. K.Alsulam, T. M. D. Alharbi, M.Moussa, C. L.Raston, ACS mega 2019, 4, 19279.
CrossRef Google scholar
[36]
T. M. DAlharbi, A. E. H. Alotaibi, C. L.Raston, ACS Appl. Nano Mater. 2023, 6, 12507.
CrossRef Google scholar
[37]
L.Li, L.,Chen, Y.Lu, B.Li, R.Hu, L.Huang, T.Zhang, X. Wei, Z.Yang, C.Mao, Aggregate 2023, 4, e200.
[38]
C.Kang, S.Tao, F.Yang, B. Yang, Aggregate 2022, 3, e169.
[39]
T. M. DAlharbi, K.Vimalanathan, W. D.Lawrance, C. L.Raston, Carbon 2018, 140, 428.
CrossRef Google scholar
[40]
N.Pierard, A.Fonseca, Z.Konya, I.Willems, G.Van Tendeloo, B. J.Nagy, Chem. Phys. Lett. 2001, 335, 1.
[41]
L. T.Scott, E. A.Jackson, Q.Zhang, B. D.Steinberg, M.Bancu, B.Li, J. Am. Chem. Soc. 2012, 134, 107.
CrossRef Google scholar
[42]
T. M. DAlharbi, Q.Li, C. L.Raston, ACS Sustain. Chem. Eng. 2021, 9, 16044.
CrossRef Google scholar
[43]
T. M. DAlharbi, Y.Shingaya, K.Vimalanathan, T.Nakayama, C. L.Raston, ACS Appl. Nano Mater. 2019, 2, 5282.
CrossRef Google scholar
[44]
M.Jellicoe, C. T.Gibson, J. S.Quinton, C. L.Raston, ACS Appl. Nano Mater. 2022, 5, 11586.
CrossRef Google scholar
[45]
Thaar M. D.Alharbi, A. H. M. Al-Antaki, M.Moussa, W. D.Hutchison, C. L.Raston, Nanoscale Adv. 2019, 1, 3761.
CrossRef Google scholar
[46]
C. L.Tong, R. A.Boulos, C.Yu, K. S.Iyer, C. L.Raston, RSC Adv. 2013, 3, 18767.
CrossRef Google scholar
[47]
C. T.Kresge, M. E.Leonowicz, W. J.Roth, J. C.Vartuli, J. S.Beck, Nature 1992, 359, 710.
CrossRef Google scholar
[48]
C. L.Tong, E.Eroglu, X.Duan, R. N.Lamb, K.Jarrett, C. E.Buckley, C. L.Raston, RSC Adv. 2015, 5, 20557.
CrossRef Google scholar
[49]
C. L.Tong, U. H.Stroeher, M. H.Brown, C. L.Raston, RSC Adv. 2015, 5, 7953.
CrossRef Google scholar
[50]
I. K.Alsulami, T. M. D. Alharbi, D. P.Harvey, C. T.Gibson, C. L.Raston, Chem. Comm. 2018, 54, 7896.
CrossRef Google scholar
[51]
J.Mo, P. K.Eggers, X.Chen, M. R. H.Ahamed, T.Becker, L. Y.Lim, C. L.Raston, Sci. Rep. 2015, 5, 10414.
[52]
H.Kumari, S. R.Kline, S. R.Kennedy, C.Garvey, C. L.Raston, J. L.Atwood, J. W.Steed, Chem. Comm. 2016, 52, 4513.
CrossRef Google scholar
[53]
Q.Hu, H.Hu, X.Zhang, K. Fan, Y.Hong, C. L.Raston, Y.Tang, Molecules 2021, 26, 4273.
CrossRef Google scholar
[54]
M.Kang, Z.Zhang, N.Song, M. Li, P.Sun, X.Chen, D.Wang, B. Z.Tang, Aggregate 2020, 1, 80.
CrossRef Google scholar
[55]
J.Britton, C. L.Raston, G. A.Weiss, Chem. Comm. 2016, 52, 10159.
CrossRef Google scholar
[56]
E. K.Sitepu, K.Corbin, X.Luo, S. J.Pye, Y.Tang, S. C.Leterme, K.Heimann, C. L.Raston, W.Zhang, Bioresour. Technol. 2018, 266, 488.
CrossRef Google scholar
[57]
E. K.Sitepu, D. B.Jones, Y.Tang, S. C. Leterme, K.Heimann, W.Zhang, C. L.Raston, Chem. Comm. 2018, 54, 12085.
CrossRef Google scholar
[58]
Y.Jiang, T.He, Y.Chen, Y. Ruan, Y.Zhou, B. Z.Tang, J.Qin, Y.Tang, Environ. Sci. Nano 2017, 4, 2186.
CrossRef Google scholar
[59]
J.Tavakoli, S.Pye, A. H. M. M.Reza, N.Xie, J.Qin, C. L.Raston, B. Z. Tang, Y.Tang, Mater. Chem. Front. 2020, 4, 537.
CrossRef Google scholar
[60]
S.Behzadi, V.Serpooshan, W.Tao, M. A.Hamaly, M. Y.Alkawareek, E. C.Dreaden, D.Brown, A. M.Alkilany, O. C.Farokhzad, M.Mahmoudi, Chem. Soc. Rev. 2017, 46, 4218.
CrossRef Google scholar
[61]
J.Tavakoli, N.Joseph, C. L.Raston, Y.Tang, Nanoscale Adv. 2020, 2, 633.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by South China University of Technology; AIE Institute and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/