Electrostatic and hydrophobic interaction cooperative nanochaperone regulates protein folding

Xiaohui Wu , Fei Deng , Yujie Chen , Mengchen Xu , Feihe Ma , Linqi Shi

Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 429

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) :429 DOI: 10.1002/agt2.429
RESEARCH ARTICLE

Electrostatic and hydrophobic interaction cooperative nanochaperone regulates protein folding

Author information +
History +
PDF

Abstract

Natural molecular chaperones utilize spatially ordered multiple molecular forces to effectively regulate protein folding. However, synthesis of such molecules is a big challenge. The concept of “aggregate science” provides insights to construct chemical entities (aggregates) beyond molecular levels to mimic both the structure and function of natural chaperone. Inspired by this concept, herein we fabricate a novel multi-interaction (i.e., electrostatic and hydrophobic interaction) cooperative nanochaperone (multi-co-nChap) to regulating protein folding. This multi-co-nChap is fabricated by rationally introducing electrostatic interactions to the surface (corona) and confined hydrophobic microdomains (shell) of traditional single-hydrophobic interaction nanochaperone. We demonstrate that the corona electrostatic attraction facilitates the diffusion of clients into the hydrophobic microdomains, while the shell electrostatic interaction balances the capture and release of clients. By finely synergizing corona electrostatic attraction with shell electrostatic repulsion and hydrophobic interaction, the optimized multi-co-nChap effectively facilitated de novo folding of nascent polypeptides. Moreover, the synergy between corona electrostatic attraction, shell electrostatic attraction and shell hydrophobic interaction significantly enhanced the capability of multi-co-nChap to protect native proteins from denaturation at harsh temperatures. This work provides important insights for understanding and design of nanochaperone, which is a kind of ordered aggregate with chaperone-like activity that beyond the level of single molecule.

Keywords

chaperone-like activity / cooperative effect / nanochaperones / ordered aggregates / protein folding

Cite this article

Download citation ▾
Xiaohui Wu, Fei Deng, Yujie Chen, Mengchen Xu, Feihe Ma, Linqi Shi. Electrostatic and hydrophobic interaction cooperative nanochaperone regulates protein folding. Aggregate, 2024, 5(1): 429 DOI:10.1002/agt2.429

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. M. Dobson, Nature 2003, 426, 884.

[2]

Y. Li, R. Tian, H. Shi, J. Xu, T. Wang, J. Liu, Aggregate 2023, 4, e317.

[3]

F. U. Hartl, Annu. Rev. Biochem. 2017, 86, 21.

[4]

R. J. Ellis, T. J. T. Pinheiro, Nature 2002, 416, 483.

[5]

G. Li, Y. M. Li, Aggregate 2022, 3, e161.

[6]

D. Chandler, Nature 2005, 437, 640.

[7]

C. N. Pace, B. A. Shirley, M. McNutt, K. Gajiwala, FASEB J. 1996, 10, 75.

[8]

R. Mitra, K. Wu, C. H. Li, J. C. A. Bardwell, Annu. Rev. Biophys. 2022, 51, 409.

[9]

R. W. Newberry, R. T. Raines, ACS Chem. Biol. 2019, 14, 1677.

[10]

D. Balchin, M. Hayer-Hartl, F. U. Hartl, Science 2016, 353, aac4354.

[11]

M. J. Avellaneda, K. B. Franke, V. Sunderlikova, B. Bukau, A. Mogk, S. J. Tans, Nature 2020, 578, 317.

[12]

K. Wu, F. Stull, C. H. Lee, J. C. A. Bardwell, Nat. Commun. 2019, 10, 4833.

[13]

S. Hiller, Trends Biotechnol. 2019, 44, 517.

[14]

R. S. Rajan, K. Tsumoto, M. Tokunaga, H. Tokunaga, Y. Kita, T. Arakawa, Curr. Org. Chem. 2011, 18, 1.

[15]

O. Hanpanich, A. Maruyama, Polymer J. 2019, 51, 935.

[16]

Q. Sun, C. W. Fu, B. Aguila, J. Perman, S. Wang, H. Y. Huang, F. S. Xiao, S. Q. Ma, J. Am. Chem. Soc. 2018, 140, 984.

[17]

F. H. Ma, C. Li, Y. Liu, L. Shi, Adv. Mater. 2020, 32, 1805945.

[18]

F. Ma, X. Wu, A. Li, L. Xu, Y. An, L. Shi, Angew. Chem. Int. Ed. 2021, 60, 10865.

[19]

L. Xu, Y. Ding, F. Ma, Y. Chen, G. Chen, L. Zhu, J. Long, R. Ma, Y. Liu, J. Liu, F. Huang, L. Shi, Nano Today 2022, 43, 101388.

[20]

X. H. Wu, F. H. Ma, B. B. Pan, Y. L. Zhang, L. Zhu, F. Deng, L. L. Xu, Y. Zhao, X. Yin, H. H. Niu, X. C. Su, L. Q. Shi, Angew. Chem. Int. Ed. 2022, 61, e202200192.

[21]

A. B. Caballero, P. Gamez, Angew. Chem. Int. Ed. 2021, 60, 41.

[22]

C. Li, X. Liu, Y. Zhang, J. Lv, F. Huang, G. Wu, Y. Liu, R. Ma, Y. An, L. Shi, Nano Lett. 2020, 20, 1755.

[23]

Y. Zhang, H. Fu, J. Chen, L. Xu, Y. An, R. Ma, C. Zhu, F. Ma, L. Shi, Small Methods 2023, 7, 2201051.

[24]

H. Zhang, Z. Zhao, A. T. Turley, L. Wang, P. R. McGonigal, Y. Tu, Y. Li, Z. Wang, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Adv. Mater. 2020, 32, 2001457.

[25]

A. Ben-Naim, J. Chem. Phys. 2006, 125, 024901.

[26]

C. Tanford, Science 1978, 200, 1012.

[27]

X. Liu, Z. Zhang, F. Huang, Q. Tao, R. Ma, Y. An, L. Shi, Chem.-Eur. J. 2013, 19, 7437.

[28]

X. Liu, H. J. Gao, F. Huang, X. D. Pei, Y. L. An, Z. K. Zhang, L. Q. Shi, Polymer 2013, 54, 3633.

[29]

F. H. Ma, Y. An, J. Wang, Y. Song, Y. Liu, L. Shi, ACS Nano 2017, 11, 10549.

[30]

R. Mitra, V. V. Gadkari, B. A. Meinen, C. Mierlo, B. T. Ruotolo, J. C. A. Bardwell, Nat. Commun. 2021, 12, 851.

[31]

P. Koldewey, F. Stull, S. Horowitz, R. Martin, J. C. A. Bardwell, Cell 2016, 166, 369.

[32]

W. He, X. Li, H. Xue, Y. Yang, J. Mencius, L. Bai, J. Zhang, J. Xu, B. Wu, Y. Xue, S. Quan, Nat. Commun. 2022, 13, 2818.

[33]

F. Baneyx, M. Mujacic, Nat. Biotechnol. 2004, 22, 1399.

[34]

B. Fahnert, Methods Mol. Biol. 2004, 267, 53.

[35]

X. X. Zhou, C. J. Bracken, K. H. Zhang, J. Zhou, Y. Mou, L. Wang, Y. F. Cheng, K. K. Leung, J. A. Wells, J. Am. Chem. Soc. 2020, 142, 17703.

[36]

X. Q. Chen, N. Rajasekaran, K. X. Liu, C. M. Kaiser, Nat. Commun. 2020, 11, 5096.

[37]

P. Roach, D. Farrar, C. C. Perry, J. Am. Chem. Soc. 2005, 127, 8168.

[38]

C. György, P. M. Kirkman, T. J. Neal, D. H. H. Chan, M. Williams, T. Smith, D. J. Growney, S. P. Armes, Angew. Chem. Int. Ed. 2013, 62, e202218397.

[39]

J. Socan, M. Purg, J. Aqvist, Nat. Commun. 2020, 11, 2644.

[40]

H. M. Lai, Y. M. Tang, Z. Y. H. Lau, R. A. A. Campbell, J. C. N. Yau, C. C. Y. Chan, D. C. W. Chan, T. Y. Wong, H. K. T. Wong, L. Y. C. Yan, W. K. K. Wu, S. H. Wong, K. W. Kwok, Y. K. Wing, H. H. N. Lam, H. K. Ng, T. D Mrsic-Flogel, V. C. T. Mok, J. Y. K. Chan, H. Ko, Nat. Methods 2022, 19, 1137.

[41]

J. R. Daban, M. D. Guasch, Biochim. Biophys. Acta 1980, 625, 237.

[42]

C. Ota, S. Tanaka, K. Takano, Molecules 2021, 26, 420.

[43]

C. Ota, K. Takano, Chemphyschem 2019, 20, 1456.

RIGHTS & PERMISSIONS

2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/