Electrostatic and hydrophobic interaction cooperative nanochaperone regulates protein folding

Xiaohui Wu, Fei Deng, Yujie Chen, Mengchen Xu, Feihe Ma, Linqi Shi

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 429. DOI: 10.1002/agt2.429
RESEARCH ARTICLE

Electrostatic and hydrophobic interaction cooperative nanochaperone regulates protein folding

Author information +
History +

Abstract

Natural molecular chaperones utilize spatially ordered multiple molecular forces to effectively regulate protein folding. However, synthesis of such molecules is a big challenge. The concept of “aggregate science” provides insights to construct chemical entities (aggregates) beyond molecular levels to mimic both the structure and function of natural chaperone. Inspired by this concept, herein we fabricate a novel multi-interaction (i.e., electrostatic and hydrophobic interaction) cooperative nanochaperone (multi-co-nChap) to regulating protein folding. This multi-co-nChap is fabricated by rationally introducing electrostatic interactions to the surface (corona) and confined hydrophobic microdomains (shell) of traditional single-hydrophobic interaction nanochaperone. We demonstrate that the corona electrostatic attraction facilitates the diffusion of clients into the hydrophobic microdomains, while the shell electrostatic interaction balances the capture and release of clients. By finely synergizing corona electrostatic attraction with shell electrostatic repulsion and hydrophobic interaction, the optimized multi-co-nChap effectively facilitated de novo folding of nascent polypeptides. Moreover, the synergy between corona electrostatic attraction, shell electrostatic attraction and shell hydrophobic interaction significantly enhanced the capability of multi-co-nChap to protect native proteins from denaturation at harsh temperatures. This work provides important insights for understanding and design of nanochaperone, which is a kind of ordered aggregate with chaperone-like activity that beyond the level of single molecule.

Keywords

chaperone-like activity / cooperative effect / nanochaperones / ordered aggregates / protein folding

Cite this article

Download citation ▾
Xiaohui Wu, Fei Deng, Yujie Chen, Mengchen Xu, Feihe Ma, Linqi Shi. Electrostatic and hydrophobic interaction cooperative nanochaperone regulates protein folding. Aggregate, 2024, 5(1): 429 https://doi.org/10.1002/agt2.429

References

[1]
C. M. Dobson, Nature 2003, 426, 884.
CrossRef Google scholar
[2]
Y. Li, R. Tian, H. Shi, J. Xu, T. Wang, J. Liu, Aggregate 2023, 4, e317.
[3]
F. U. Hartl, Annu. Rev. Biochem. 2017, 86, 21.
CrossRef Google scholar
[4]
R. J. Ellis, T. J. T. Pinheiro, Nature 2002, 416, 483.
CrossRef Google scholar
[5]
G. Li, Y. M. Li, Aggregate 2022, 3, e161.
[6]
D. Chandler, Nature 2005, 437, 640.
CrossRef Google scholar
[7]
C. N. Pace, B. A. Shirley, M. McNutt, K. Gajiwala, FASEB J. 1996, 10, 75.
CrossRef Google scholar
[8]
R. Mitra, K. Wu, C. H. Li, J. C. A. Bardwell, Annu. Rev. Biophys. 2022, 51, 409.
CrossRef Google scholar
[9]
R. W. Newberry, R. T. Raines, ACS Chem. Biol. 2019, 14, 1677.
CrossRef Google scholar
[10]
D. Balchin, M. Hayer-Hartl, F. U. Hartl, Science 2016, 353, aac4354.
[11]
M. J. Avellaneda, K. B. Franke, V. Sunderlikova, B. Bukau, A. Mogk, S. J. Tans, Nature 2020, 578, 317.
CrossRef Google scholar
[12]
K. Wu, F. Stull, C. H. Lee, J. C. A. Bardwell, Nat. Commun. 2019, 10, 4833.
[13]
S. Hiller, Trends Biotechnol. 2019, 44, 517.
CrossRef Google scholar
[14]
R. S. Rajan, K. Tsumoto, M. Tokunaga, H. Tokunaga, Y. Kita, T. Arakawa, Curr. Org. Chem. 2011, 18, 1.
[15]
O. Hanpanich, A. Maruyama, Polymer J. 2019, 51, 935.
CrossRef Google scholar
[16]
Q. Sun, C. W. Fu, B. Aguila, J. Perman, S. Wang, H. Y. Huang, F. S. Xiao, S. Q. Ma, J. Am. Chem. Soc. 2018, 140, 984.
CrossRef Google scholar
[17]
F. H. Ma, C. Li, Y. Liu, L. Shi, Adv. Mater. 2020, 32, 1805945.
[18]
F. Ma, X. Wu, A. Li, L. Xu, Y. An, L. Shi, Angew. Chem. Int. Ed. 2021, 60, 10865.
CrossRef Google scholar
[19]
L. Xu, Y. Ding, F. Ma, Y. Chen, G. Chen, L. Zhu, J. Long, R. Ma, Y. Liu, J. Liu, F. Huang, L. Shi, Nano Today 2022, 43, 101388.
CrossRef Google scholar
[20]
X. H. Wu, F. H. Ma, B. B. Pan, Y. L. Zhang, L. Zhu, F. Deng, L. L. Xu, Y. Zhao, X. Yin, H. H. Niu, X. C. Su, L. Q. Shi, Angew. Chem. Int. Ed. 2022, 61, e202200192.
[21]
A. B. Caballero, P. Gamez, Angew. Chem. Int. Ed. 2021, 60, 41.
CrossRef Google scholar
[22]
C. Li, X. Liu, Y. Zhang, J. Lv, F. Huang, G. Wu, Y. Liu, R. Ma, Y. An, L. Shi, Nano Lett. 2020, 20, 1755.
CrossRef Google scholar
[23]
Y. Zhang, H. Fu, J. Chen, L. Xu, Y. An, R. Ma, C. Zhu, F. Ma, L. Shi, Small Methods 2023, 7, 2201051.
[24]
H. Zhang, Z. Zhao, A. T. Turley, L. Wang, P. R. McGonigal, Y. Tu, Y. Li, Z. Wang, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Adv. Mater. 2020, 32, 2001457.
[25]
A. Ben-Naim, J. Chem. Phys. 2006, 125, 024901.
[26]
C. Tanford, Science 1978, 200, 1012.
CrossRef Google scholar
[27]
X. Liu, Z. Zhang, F. Huang, Q. Tao, R. Ma, Y. An, L. Shi, Chem.-Eur. J. 2013, 19, 7437.
CrossRef Google scholar
[28]
X. Liu, H. J. Gao, F. Huang, X. D. Pei, Y. L. An, Z. K. Zhang, L. Q. Shi, Polymer 2013, 54, 3633.
CrossRef Google scholar
[29]
F. H. Ma, Y. An, J. Wang, Y. Song, Y. Liu, L. Shi, ACS Nano 2017, 11, 10549.
CrossRef Google scholar
[30]
R. Mitra, V. V. Gadkari, B. A. Meinen, C. Mierlo, B. T. Ruotolo, J. C. A. Bardwell, Nat. Commun. 2021, 12, 851.
[31]
P. Koldewey, F. Stull, S. Horowitz, R. Martin, J. C. A. Bardwell, Cell 2016, 166, 369.
CrossRef Google scholar
[32]
W. He, X. Li, H. Xue, Y. Yang, J. Mencius, L. Bai, J. Zhang, J. Xu, B. Wu, Y. Xue, S. Quan, Nat. Commun. 2022, 13, 2818.
[33]
F. Baneyx, M. Mujacic, Nat. Biotechnol. 2004, 22, 1399.
CrossRef Google scholar
[34]
B. Fahnert, Methods Mol. Biol. 2004, 267, 53.
[35]
X. X. Zhou, C. J. Bracken, K. H. Zhang, J. Zhou, Y. Mou, L. Wang, Y. F. Cheng, K. K. Leung, J. A. Wells, J. Am. Chem. Soc. 2020, 142, 17703.
CrossRef Google scholar
[36]
X. Q. Chen, N. Rajasekaran, K. X. Liu, C. M. Kaiser, Nat. Commun. 2020, 11, 5096.
[37]
P. Roach, D. Farrar, C. C. Perry, J. Am. Chem. Soc. 2005, 127, 8168.
CrossRef Google scholar
[38]
C. György, P. M. Kirkman, T. J. Neal, D. H. H. Chan, M. Williams, T. Smith, D. J. Growney, S. P. Armes, Angew. Chem. Int. Ed. 2013, 62, e202218397.
[39]
J. Socan, M. Purg, J. Aqvist, Nat. Commun. 2020, 11, 2644.
[40]
H. M. Lai, Y. M. Tang, Z. Y. H. Lau, R. A. A. Campbell, J. C. N. Yau, C. C. Y. Chan, D. C. W. Chan, T. Y. Wong, H. K. T. Wong, L. Y. C. Yan, W. K. K. Wu, S. H. Wong, K. W. Kwok, Y. K. Wing, H. H. N. Lam, H. K. Ng, T. D Mrsic-Flogel, V. C. T. Mok, J. Y. K. Chan, H. Ko, Nat. Methods 2022, 19, 1137.
CrossRef Google scholar
[41]
J. R. Daban, M. D. Guasch, Biochim. Biophys. Acta 1980, 625, 237.
CrossRef Google scholar
[42]
C. Ota, S. Tanaka, K. Takano, Molecules 2021, 26, 420.
CrossRef Google scholar
[43]
C. Ota, K. Takano, Chemphyschem 2019, 20, 1456.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/