Template-free nanostructured particle growth via a one-pot continuous gradient nanoprecipitation

Xie Cheng, Shuai Wang, Julien Bernard, François Ganachaud, Xibo Yan

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 427. DOI: 10.1002/agt2.427
RESEARCH ARTICLE

Template-free nanostructured particle growth via a one-pot continuous gradient nanoprecipitation

Author information +
History +

Abstract

Engineered nanoparticles have emerged as new types of materials for a wide range of applications from therapeutics to energy. Still, fabricating nanomaterials presenting complex inner morphologies and shapes in a simple manner remains a great challenge. Herein, we report the template-free one-pot continuous gradient nanoprecipitation of different types of non-compatible polymers to spontaneously form nanostructured particles. The continuous addition of antisolvent induces precipitation and (re)organization of polymer chains at the forming particle interface, ultimately and naturally developing complex inner morphologies and shapes while particle grows. This low-energy-cost bottom-up assembly approach applies to various functional polymers, possibly embedded with metal nanoparticles, for continuous growth into well-organized nanoparticles. UV crosslinking of the particles and core removal allows both confirming the building process and leading to hollow or multivoid nanomaterials.

Keywords

aggregation / nanoprecipitation / phase diagrams / polymeric nanoparticles / self-assembly

Cite this article

Download citation ▾
Xie Cheng, Shuai Wang, Julien Bernard, François Ganachaud, Xibo Yan. Template-free nanostructured particle growth via a one-pot continuous gradient nanoprecipitation. Aggregate, 2024, 5(1): 427 https://doi.org/10.1002/agt2.427

References

[1]
G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418.
CrossRef Google scholar
[2]
B. A. Grzybowski, C. E. Wilmer, J. Kim, K. P. Browne, K. J. M. Bishop, Soft Matter 2009, 5, 1110.
CrossRef Google scholar
[3]
D. M. Bryant, K. E. Mostov, Nature Rev. Mol. Cell Bio. 2008, 9, 887.
CrossRef Google scholar
[4]
K. Jakab, A. Neagu, V. Mironov, R. R. Markwald, G. Forgacs, Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 2864.
CrossRef Google scholar
[5]
Y. Liu, R. Yang, Z. He, W.-Q. Gao, Cell Regen. 2013, 2, 1.
[6]
L.-L. Li, H.-W. An, B. Peng, R. Zheng, H. Wang, Mater. Horiz. 2019, 6, 1794.
CrossRef Google scholar
[7]
Y. Xu, G. Shi, X. Duan, Acc. Chem. Res. 2015, 48, 1666.
CrossRef Google scholar
[8]
Z. Nie, A. Petukhova, E. Kumacheva, Nat. Nanotech. 2010, 5, 15.
CrossRef Google scholar
[9]
Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969.
CrossRef Google scholar
[10]
J. Mei, N. L. C. Leung, R. T. K. Kwok, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2015, 115, 11718.
CrossRef Google scholar
[11]
H.-C. Kim, S.-M. Park, W. D. Hinsberg, Chem. Rev. 2010, 110, 146.
CrossRef Google scholar
[12]
C. G. Palivan, R. Goers, A. Najer, X. Zhang, A. Car, W. Meier, Chem. Soc. Rev. 2016, 45, 377.
CrossRef Google scholar
[13]
X. Yan, L. Chai, E. Fleury, F. Ganachaud, J. Bernard, Prog. Polym. Sci. 2021, 120, 101429.
CrossRef Google scholar
[14]
A. Walther, A. H. E. Müller, Chem. Rev. 2013, 113, 5194.
CrossRef Google scholar
[15]
L. Tan, B. Tan, Chem. Soc. Rev. 2017, 46, 3322.
CrossRef Google scholar
[16]
J. Wackerlig, R. Schirhagl, Anal. Chem. 2016, 88, 250.
CrossRef Google scholar
[17]
Y. Wang, A. S. Angelatos, F. Caruso, Chem. Mater. 2008, 20, 848.
CrossRef Google scholar
[18]
T. L. Kelly, M. O. Wolf, Chem. Soc. Rev. 2010, 39, 1526.
CrossRef Google scholar
[19]
J. Cui, J. J. Richardson, M. Björnmalm, M. Faria, F. Caruso, Acc. Chem. Res. 2016, 49, 1139.
CrossRef Google scholar
[20]
M. Pérez-Page, E. Yu, J. Li, M. Rahman, D. M. Dryden, R. Vidu, P. Stroeve, Adv. Colloid Interface Sci. 2016, 234, 51.
CrossRef Google scholar
[21]
J. J. Shin, E. J. Kim, K. H. Ku, Y. J. Lee, C. J. Hawker, B. J. Kim, ACS Macro Lett. 2020, 9, 306.
CrossRef Google scholar
[22]
C. K. Wong, X. Qiang, A. H. E. Müller, A. H. Gröschel, Prog. Polym. Sci. 2020, 102, 101211.
[23]
R. Deng, J. Xu, G.-R. Yi, J. W. Kim, J. Zhu, Adv. Funct. Mater. 2021, 31, 2008169.
[24]
C. J. Brinker, Y. Lu, A. Sellinger, H. Fan, Adv. Mater. 1999, 11, 579.
CrossRef Google scholar
[25]
N. Yan, Y. Zhu, W. Jiang, Chem. Commun. 2018, 54, 13183.
CrossRef Google scholar
[26]
M. Peng, D. Hu, X. Chang, Y. Zhu, J. Phys. Chem. B 2022, 126, 9435.
CrossRef Google scholar
[27]
E. Lepeltier, C. Bourgaux, P. Couvreur, Adv. Drug Deliv. Rev. 2014, 71, 86.
CrossRef Google scholar
[28]
R. Huang, C.-M. Hirschbiegel, X. Zhang, A. Gupta, S. Fedeli, Y. Xu, V. M. Rotello, ACS Appl. Mater. Interfaces 2022, 14, 31594.
CrossRef Google scholar
[29]
T. Tien, S. C. Saccomano, P. A. Martin, M. S. Armstrong, R. K. Prud’homme, K. J. Cash, ACS Sens. 2022, 7, 2606.
CrossRef Google scholar
[30]
W. Qin, N. Alifu, J. W. Y. Lam, Y. Cui, H. Su, G. Liang, J. Qian, B. Z. Tang, Adv. Mater. 2020, 32, 2000364.
[31]
X. Xiong, X. Huang, Y. Liu, A. Feng, Z. Wang, X. Cheng, Z. He, S. Wang, J. Guo, X. Yan, Chem. Eng. J. 2022, 445, 136576.
CrossRef Google scholar
[32]
X. Yan, R. Ramos, E. Hoibian, C. Soulage, P. Alcouffe, F. Ganachaud, J. Bernard, ACS Macro Lett. 2017, 6, 447.
CrossRef Google scholar
[33]
F. Ganachaud, J. L. Katz, ChemPhysChem 2005, 6, 209.
CrossRef Google scholar
[34]
W. S. Saad, R. K. Prud’homme, Nano Today 2016, 11, 212.
CrossRef Google scholar
[35]
S. Schubert, J. J. T. Delaney, U. S. Schubert, Soft Matter 2011, 7, 1581.
CrossRef Google scholar
[36]
X. Yan, J. Bernard, F. Ganachaud, Adv. Colloid Interface Sci. 2021, 294, 102474.
CrossRef Google scholar
[37]
W. N. Sharratt, V. E. Lee, R. D. Priestley, J. T. Cabral, ACS Appli. Polym. Mater. 2021, 3, 4746.
CrossRef Google scholar
[38]
Y. Liu, G. Yang, D. Zou, Y. Hui, K. Nigam, A. P. J. Middelberg, C.-X. Zhao, Ind. Eng. Chem. Res. 2020, 59, 4134.
CrossRef Google scholar
[39]
D. Liu, H. Zhang, S. Cito, J. Fan, E. Mäkilä, J. Salonen, J. Hirvonen, T. M. Sikanen, D. A. Weitz, H. A. Santos, Nano Lett. 2017, 17, 606.
CrossRef Google scholar
[40]
Y. Liu, G. Yang, T. Baby, Tengjisi, D. Chen, D. A. Weitz, C.-X. Zhao, Angew. Chem. Int. Ed. 2020, 59, 4720.
CrossRef Google scholar
[41]
X. Yan, R. A. N. S. Ramos, P. Alcouffe, L. E. Munoz, R. O. Bilyy, F. Ganachaud, J. Bernard, Biomacromolecules 2019, 20, 3915.
CrossRef Google scholar
[42]
C. Sosa, V. E. Lee, L. S. Grundy, M. J. Burroughs, R. Liu, R. K. Prud’homme, R. D. Priestley, Langmuir 2017, 33, 5835.
CrossRef Google scholar
[43]
C. J. M Rivas, M. Tarhini, W. Badri, K. Miladi, H. Greige-Gerges, Q. A. Nazari, S. A. G. Rodríguez, R. Á. Román, H. Fessi, A. Elaissari, Int. J. Pharm. 2017, 532, 66.
CrossRef Google scholar
[44]
N. Boehnke, S. Correa, L. Hao, W. Wang, J. P. Straehla, S. N. Bhatia, P. T. Hammond, Angew. Chem. Int. Ed. 2020, 59, 2776.
CrossRef Google scholar
[45]
N. T. K Thanh, N. Maclean, S. Mahiddine, Chem. Rev. 2014, 114, 7610.
CrossRef Google scholar
[46]
D. Patel, K. C. Kuperkar, ChemistrySelect 2018, 3, 4382.
CrossRef Google scholar
[47]
M. Beck-Broichsitter, J. Nicolas, P. Couvreur, Nanoscale 2015, 7, 9215.
CrossRef Google scholar
[48]
A. Feng, X. Huang, X. Cheng, M. Chu, S. Wang, X. Yan, Chem. Eng. J. 2022, 440, 135838.
CrossRef Google scholar
[49]
X. Huang, Y. Liu, A. Feng, X. Cheng, X. Xiong, Z. Wang, Z. He, J. Guo, S. Wang, X. Yan, Small 2022, 18, 2201525.
[50]
S. Tang, T. L. Fox, T.-Y. Lo, J. M. Horton, R.-M. Ho, B. Zhao, P. L. Stewart, L. Zhu, Soft Matter 2015, 11, 5501.
CrossRef Google scholar
[51]
J. Lee, S. M. Kim, I. S. Lee, Nano Today 2014, 9, 631.
CrossRef Google scholar
[52]
D. Tarn, C. E. Ashley, M. Xue, E. C. Carnes, J. I. Zink, C. J. Brinker, Acc. Chem. Res. 2013, 46, 792.
CrossRef Google scholar
[53]
Z. Wang, L. Zhou, X. W. Lou, Adv. Mater. 2012, 24, 1903.
CrossRef Google scholar
[54]
W. Ahn, M. G. Park, D. U. Lee, M. H. Seo, G. Jiang, Z. P. Cano, F. M. Hassan, Z. Chen, Adv. Funct. Mater. 2018, 28, 1802129.
[55]
J.-S. Lin, P. M. Radjenovic, H. Jin, J.-F. Li, Anal. Chem. 2021, 93, 6573.
CrossRef Google scholar
[56]
R. Augustine, A. Hasan, R. Primavera, R. J. Wilson, A. S. Thakor, B. D. Kevadiya, Mater. Today Commun. 2020, 25, 101692.
CrossRef Google scholar
[57]
G. Chen, H. Ågren, T. Y. Ohulchanskyy, P. N. Prasad, Chem. Soc. Rev. 2015, 44, 1680.
CrossRef Google scholar
[58]
J. A. Finbloom, F. Sousa, M. M. Stevens, T. A. Desai, Adv. Drug Deliv. Rev. 2020, 167, 89.
CrossRef Google scholar
[59]
M. B. Gawande, A. Goswami, T. Asefa, H. Guo, A. V. Biradar, D.-L. Peng, R. Zboril, R. S. Varma, Chem. Soc. Rev. 2015, 44, 7540.
CrossRef Google scholar
[60]
X. Huang, P. Jiang, Adv. Mater. 2015, 27, 546.
[61]
D. Zhao, T. Meng, J. Qin, W. Wang, Z. Yin, M. Cao, ACS Appl. Mater. Interfaces 2017, 9, 1437.
CrossRef Google scholar
[62]
B. Han, D. Zhang, X. Liu, Z. Wang, W. Qu, S. Zhang, C. Deng, J. Mater. Chem. A 2022, 10, 13508.
CrossRef Google scholar
[63]
J. Liu, Y. Lu, Nature Protoc. 2006, 1, 246.
CrossRef Google scholar
[64]
S. Pedireddy, H. K. Lee, W. W. Tjiu, I. Y. Phang, H. R. Tan, S. Q. Chua, C. Troadec, X. Y. Ling, Nat. Commun. 2014, 5, 4947.
[65]
X. Cheng, X. Zhou, J. Xu, R. Sun, H. Xia, J. Ding, Y. E. Chin, Z. Chai, H. Shi, M. Gao, Anal. Chem. 2021, 93, 9277.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/