Dynamic aggregation of carbon dots self-stabilizes symmetry breaking for exceptional hydrogen production with near-infrared light

Qi Zhang, Ya Zhang, Hu Shi, Hongxia Zhang, Jianghong Zhao, Zhanfeng Zheng, Hengquan Yang, Pengju Yang

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 424. DOI: 10.1002/agt2.424
RESEARCH ARTICLE

Dynamic aggregation of carbon dots self-stabilizes symmetry breaking for exceptional hydrogen production with near-infrared light

Author information +
History +

Abstract

Developing new photosystems that integrate broad-band near-infrared (NIR) light harvesting and efficient charge separation is a long-sought goal in the photocatalytic community. In this work, we develop a novel photochemical strategy to prepare light-active carbon dots (CDs) under room temperature and discover that the aggregation of CDs can broaden the light absorption to the NIR region due to the electronic couplings between neighboring CDs. Importantly, the dynamic noncovalent interactions within CD aggregates can stabilize symmetry breaking and thus induce large dipole moments for charge separation and transfer. Furthermore, the weak non-covalent interactions allow for flexible design of the aggregated degrees and the local electronic structures of CD aggregates, further strengthening NIR-light harvesting and charge separation efficiency. As a result, the CD aggregates achieve a record apparent quantum yield of 13.5% at 800 nm, which is one of the best-reported values for NIR-light-driven hydrogen photosynthesis to date. Moreover, we have prepared a series of different CDs and also observed that these CDs after aggregation all exhibit outstanding NIR-responsive photocatalytic hydrogen production activity, suggesting the universality of aggregation-enhanced photocatalysis. This discovery opens a new promising platform for using CD aggregates as efficient light absorbers for solar conversion.

Keywords

aggregation / charge separation / hydrogen production / near-infrared light / photocatalysis

Cite this article

Download citation ▾
Qi Zhang, Ya Zhang, Hu Shi, Hongxia Zhang, Jianghong Zhao, Zhanfeng Zheng, Hengquan Yang, Pengju Yang. Dynamic aggregation of carbon dots self-stabilizes symmetry breaking for exceptional hydrogen production with near-infrared light. Aggregate, 2024, 5(1): 424 https://doi.org/10.1002/agt2.424

References

[1]
T.Hisatomi, J.Kubota, K.Domen, Chem. Soc. Rev. 2014, 43, 7520.
CrossRef Google scholar
[2]
F. E.Osterloh, Chem. Soc. Rev. 2013, 42, 2294.
CrossRef Google scholar
[3]
J.Li, X.Wu, W.Pan, G. Zhang, H.Chen, Angew. Chem. Int. Ed. 2018, 57, 491.
CrossRef Google scholar
[4]
P.Yang, R.Wang, M.Zhou, X. Wang, Angew. Chem. Int. Ed. 2018, 57, 8674.
CrossRef Google scholar
[5]
M.Ming, H.Yuan, S.Yang, Z. Wei, Q.Lei, J.Lei, Z.Han, J. Am. Chem. Soc. 2022, 43, 19680.
[6]
X.Zhang, T.Peng, L.Yu, R.Li, Q.Li, Z.Li, ACS Catal. 2015, 5, 504.
[7]
H.Kotani, T.Miyazaki, E.Aoki, H.Sakai, T.Hasobe, T.Kojima, ACS Appl. Energy Mater. 2020, 3, 3193.
CrossRef Google scholar
[8]
G.Cui, W.Wang, M.Ma, J.Xie, X.Shi, N. Deng, J.Xin, B.Tang, Nano Lett. 2015, 15, 7199.
CrossRef Google scholar
[9]
B. C. MMartindale, G. A. M. Hutton, C. A.Caputo, S.Prantl, R.Godin, J. R.Durrant, E.Reisner, Angew. Chem. Int. Ed. 2017, 56, 6459.
CrossRef Google scholar
[10]
B. C. MMartindale, E. Joliat, C.Bachmann, R.Alberto, E.Reisner, Angew. Chem. Int. Ed. 2016, 55, 9402.
CrossRef Google scholar
[11]
T.-F.Yeh, C.-Y.Teng, S.-J.Chen, H. Teng, Adv. Mater. 2014, 26, 3297.
CrossRef Google scholar
[12]
B.Jana, Y.Reva, T.Scharl, V. Strauss, A.Cadranel, D. M.Guldi, J. Am. Chem. Soc. 2021, 143, 20122.
CrossRef Google scholar
[13]
P.Yang, R.Wang, H.Zhang, J. Zhao, P.Wang, H.Shi, H.Yang, Chem. Commun. 2021, 57, 5086.
CrossRef Google scholar
[14]
J. L.McHale, J. Phys. Chem. Lett. 2012, 3, 587.
CrossRef Google scholar
[15]
H.Zhang, Z.Zhao, A. T.Turley, L. Wang, P. R.McGonigal, Y.Tu, Y.Li, Z.Wang, R. T. K. Kwok, J. W. Y.Lam, B. Z.Tang, Adv. Mater. 2020, 32, 2001457.
[16]
M.Chen, H.Nie, B.Song, L. Li, J. Z.Sun, A.Qin, B. Z.Tang, J. Mater. Chem. C 2016, 4, 2901.
CrossRef Google scholar
[17]
Y.Tu, J.Liu, H.Zhang, Q. Peng, J. W. Y.Lam, B. Z.Tang, Angew. Chem. Int. Ed. 2019, 58, 14911.
CrossRef Google scholar
[18]
F.Wuerthner, T. E.Kaiser, C. RSaha-Moeller, Angew. Chem. Int. Ed. 2011, 50, 3376.
CrossRef Google scholar
[19]
F.Wang, F.Gan, C.Shen, H. Qiu, J. Am. Chem. Soc. 2020, 142, 16167.
CrossRef Google scholar
[20]
R.Hu, E.Lager, A.Aguilar-Aguilar, J.Liu, J. W. Y. Lam, H. H. Y.Sung, I. D.Williams, Y.Zhong, K. S.Wong, E. Peña-Cabrera, B. Z.Tang, J. Phys. Chem. C 2009, 113, 15845.
CrossRef Google scholar
[21]
T.He, Y.Zhang, H.Zhang, J. Zhao, H.Shi, H.Yang, P.Yang, ChemSusChem 2023, 16, e202300500.
[22]
J.-M.Lehn, Chem. Soc. Rev. 2007, 36, 151.
CrossRef Google scholar
[23]
J. J.Piet, W.Schuddeboom, B. R.Wegewijs, F. C.Grozema, J. M.Warman, J. Am. Chem. Soc. 2001, 123, 5337.
CrossRef Google scholar
[24]
E.Vauthey, ChemPhysChem 2012, 13, 2001.
CrossRef Google scholar
[25]
S. Y.Lim, W.Shen, Z.Gao, Chem. Soc. Rev. 2015, 44, 362.
CrossRef Google scholar
[26]
P.Yang, Z.Yang, J. Energy Chem. 2020, 50, 365.
CrossRef Google scholar
[27]
Y.Mu, N.Wang, Z.Sun, J. Wang, J.Li, J.Yu, Chem. Sci. 2016, 7, 3564.
CrossRef Google scholar
[28]
P.Yang, J.Zhao, L.Zhang, L. Li, Z.Zhu, Chem. Eur. J. 2015, 21, 8561.
CrossRef Google scholar
[29]
D.Wang, J.-F.Chen, L.Dai, Part. Part. Syst. Char. 2015, 32, 515.
CrossRef Google scholar
[30]
H.Yang, Y.Liu, Z.Guo, B. Lei, J.Zhuang, X.Zhang, Z.Liu, C.Hu, Nat. Commun. 2019, 10, 1789.
[31]
X.Mu, J.Wang, H.He, Q.Li, B.Yang, J. Wang, H.Liu, Y.Gao, L.Ouyang, S.Sun, Q.Ren, X.Shi, W.Hao, Q. Fei, J.Yang, L.Li, R.Vest, T.Wyss-Coray, J.Luo, X.-D.Zhang, Sci. Adv. 2021, 7, eabk1210.
[32]
F. S.Freyria, J. M.Cordero, J. R.Caram, S.Doria, A.Dodin, Y.Chen, A. P. Willard, M. G.Bawendi, Nano Lett. 2017, 17, 7665.
CrossRef Google scholar
[33]
S.Manzetti, T.Lu, H.Behzadi, M. D. Estrafili, H.-L. TLe, H.Vach, RSC Adv. 2015, 5, 78192.
CrossRef Google scholar
[34]
X.Wang, Z.Liu, X.Yan, T. Lu, W.Zheng, W.Xiong, Chem. Eur. J. 2022, 28, e202103815.
[35]
P.Yang, Y.Zhang, H.Zhang, J. Zhao, Z.Wei, H.Shi, Z.Zheng, Y.Huang, H. Yang, ACS Catal. 2022, 12, 6276.
CrossRef Google scholar
[36]
M. E.Mohanty, C.Madhu, V. L.Reddy, M. Paramasivam, P. R.Bangal, V. J.Rao, Phys. Chem. Chem. Phys. 2017, 19, 9118.
CrossRef Google scholar
[37]
N. J.Hestand, F. C.Spano, Acc. Chem. Res. 2017, 50, 341.
CrossRef Google scholar
[38]
E. A.Margulies, L. E.Shoer, S. W.Eaton, M. R. Wasielewski, Phys. Chem. Chem. Phys. 2014, 16, 23735.
CrossRef Google scholar
[39]
J.Zhang, X.Liang, C.Zhang, L. Lin, W.Xing, Z.Yu, G.Zhang, X.Wang, Angew. Chem. Int. Ed. 2022, 61, e2022108.
[40]
M.Liu, C.Wei, H.Zhuzhang, J. Zhou, Z.Pan, W.Lin, Z.Yu, G.Zhang, X. Wang, Angew. Chem. Int. Ed. 2022, 61, e202113389.
[41]
W.-C.Chen, Y.-C.Chang, Phys. Chem. Chem. Phys. 2021, 23, 18163.
CrossRef Google scholar
[42]
S.Atahan-Evrenk, F. B. Atalay, J. Phys. Chem. A 2019, 123, 7855.
CrossRef Google scholar
[43]
C.Lin, T.Kim, J. D.Schultz, R. M.Young, M. R.Wasielewski, Nat. Chem. 2022, 14, 786.
CrossRef Google scholar
[44]
G.Ran, J.Zeb, Y.Song, P. A. Denis, U.Ghani, W.Zhang, J. Phys. Chem. C 2022, 126, 3872.
CrossRef Google scholar
[45]
F.Li, Z.Zheng, S.Xia, L. Yu, J. Mol. Struct. 2020, 1219, 128480.
CrossRef Google scholar
[46]
Z.-L.Li, L.-S.Zhou, Y.-H.Wei, H.-L. Peng, K.Huang, Ind. Eng. Chem. Res. 2020, 59, 13696.
CrossRef Google scholar
[47]
J.Zhang, T.Lu, Phys. Chem. Chem. Phys. 2021, 23, 20323.
CrossRef Google scholar
[48]
Y.Sheng, W.Li, L.Xu, Y.Zhu, Adv. Mater. 2022, 34, 2102354.
[49]
Y.Guo, Q.Zhou, J.Nan, W. Shi, F.Cui, Y.Zhu, Nat. Commun. 2022, 13, 2067.
[50]
H.Lin, J.Wang, J.Zhao, Y. Zhuang, B.Liu, Y.Zhu, H.Jia, K.Wu, J.Shen, X.Fu, X.Zhang, J.Long, Angew. Chem. Int. Ed. 2022, 61, e202117645.
[51]
P.Yang, Q.Zhang, Y.Zhang, H. Zhang, J.Zhao, H.Shi, L.Liang, Y.Huang, Z. Zheng, H.Yang, ACS Catal. 2023, 13, 3723.
CrossRef Google scholar
[52]
Z.Bi, C.Feng, D.Wang, X. Ge, H.Tang, Colloids Surf. A. 2012, 407, 91.
CrossRef Google scholar
[53]
A.Moncho-Jorda, F.Martinez-Lopez, R.Hidalgo-Alvarez, J. Colloid. Interf. Sci. 2002, 249, 405.
CrossRef Google scholar
[54]
C.Bie, B.Zhu, L.Wang, H. Yu, C.Jiang, T.Chen, J.Yu, Angew. Chem. Int. Ed. 2022, 61, e202212045.
[55]
W.Chao, Y.Li, X.Sun, G. Cao, C.Wang, S.-H.Ho, Chem. Eng. J. 2021, 405, 126703.
CrossRef Google scholar
[56]
S.Chaudhury, S.Lyskov, J. J.Gray, Bioinformatics, 2010, 26, 689.
CrossRef Google scholar
[57]
V.Hornak, R.Abel, A.Okur, B. Strockbine, A.Roitberg, C.Simmerling, Proteins 2006, 65, 712.
CrossRef Google scholar
[58]
P.Eastman, M. S.Friedrichs, J. D.Chodera, R. J.Radmer, C. M.Bruns, J. P.Ku, K. A. Beauchamp, T. J.Lane, L. P.Wang, D.Shukla, T.Tye, M.Houston, T.Stich, C.Klein, M. R. Shirts, V. S.Pande, J. Chem. Theory. Comput. 2013, 9, 461.
CrossRef Google scholar
[59]
S.Piana, K.Lindorff-Larsen, D. E.Shaw, Biophys J. 2011, 100, L47.
CrossRef Google scholar
[60]
W. L.Jorgensen, J.Chandrasekhar, J. D.Madura, R. W.Impey, M. L.Klein, J. Chem. Phys. 1983, 79, 926.
CrossRef Google scholar
[61]
J.Tirado-Rives, W. L.Jorgensen, J. Chem. Theory. Comput. 2008, 4, 297.
CrossRef Google scholar
[62]
T.Lu, F.Chen, J. Comput. Chem. 2012, 33, 580.
CrossRef Google scholar
[63]
W.Humphrey, A.Dalke, K.Schulten, J. Mol. Graph. 1996, 14, 33.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/