Dynamic aggregation of carbon dots self-stabilizes symmetry breaking for exceptional hydrogen production with near-infrared light

Qi Zhang , Ya Zhang , Hu Shi , Hongxia Zhang , Jianghong Zhao , Zhanfeng Zheng , Hengquan Yang , Pengju Yang

Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 424

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) :424 DOI: 10.1002/agt2.424
RESEARCH ARTICLE

Dynamic aggregation of carbon dots self-stabilizes symmetry breaking for exceptional hydrogen production with near-infrared light

Author information +
History +
PDF

Abstract

Developing new photosystems that integrate broad-band near-infrared (NIR) light harvesting and efficient charge separation is a long-sought goal in the photocatalytic community. In this work, we develop a novel photochemical strategy to prepare light-active carbon dots (CDs) under room temperature and discover that the aggregation of CDs can broaden the light absorption to the NIR region due to the electronic couplings between neighboring CDs. Importantly, the dynamic noncovalent interactions within CD aggregates can stabilize symmetry breaking and thus induce large dipole moments for charge separation and transfer. Furthermore, the weak non-covalent interactions allow for flexible design of the aggregated degrees and the local electronic structures of CD aggregates, further strengthening NIR-light harvesting and charge separation efficiency. As a result, the CD aggregates achieve a record apparent quantum yield of 13.5% at 800 nm, which is one of the best-reported values for NIR-light-driven hydrogen photosynthesis to date. Moreover, we have prepared a series of different CDs and also observed that these CDs after aggregation all exhibit outstanding NIR-responsive photocatalytic hydrogen production activity, suggesting the universality of aggregation-enhanced photocatalysis. This discovery opens a new promising platform for using CD aggregates as efficient light absorbers for solar conversion.

Keywords

aggregation / charge separation / hydrogen production / near-infrared light / photocatalysis

Cite this article

Download citation ▾
Qi Zhang, Ya Zhang, Hu Shi, Hongxia Zhang, Jianghong Zhao, Zhanfeng Zheng, Hengquan Yang, Pengju Yang. Dynamic aggregation of carbon dots self-stabilizes symmetry breaking for exceptional hydrogen production with near-infrared light. Aggregate, 2024, 5(1): 424 DOI:10.1002/agt2.424

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

T.Hisatomi, J.Kubota, K.Domen, Chem. Soc. Rev. 2014, 43, 7520.

[2]

F. E.Osterloh, Chem. Soc. Rev. 2013, 42, 2294.

[3]

J.Li, X.Wu, W.Pan, G. Zhang, H.Chen, Angew. Chem. Int. Ed. 2018, 57, 491.

[4]

P.Yang, R.Wang, M.Zhou, X. Wang, Angew. Chem. Int. Ed. 2018, 57, 8674.

[5]

M.Ming, H.Yuan, S.Yang, Z. Wei, Q.Lei, J.Lei, Z.Han, J. Am. Chem. Soc. 2022, 43, 19680.

[6]

X.Zhang, T.Peng, L.Yu, R.Li, Q.Li, Z.Li, ACS Catal. 2015, 5, 504.

[7]

H.Kotani, T.Miyazaki, E.Aoki, H.Sakai, T.Hasobe, T.Kojima, ACS Appl. Energy Mater. 2020, 3, 3193.

[8]

G.Cui, W.Wang, M.Ma, J.Xie, X.Shi, N. Deng, J.Xin, B.Tang, Nano Lett. 2015, 15, 7199.

[9]

B. C. MMartindale, G. A. M. Hutton, C. A.Caputo, S.Prantl, R.Godin, J. R.Durrant, E.Reisner, Angew. Chem. Int. Ed. 2017, 56, 6459.

[10]

B. C. MMartindale, E. Joliat, C.Bachmann, R.Alberto, E.Reisner, Angew. Chem. Int. Ed. 2016, 55, 9402.

[11]

T.-F.Yeh, C.-Y.Teng, S.-J.Chen, H. Teng, Adv. Mater. 2014, 26, 3297.

[12]

B.Jana, Y.Reva, T.Scharl, V. Strauss, A.Cadranel, D. M.Guldi, J. Am. Chem. Soc. 2021, 143, 20122.

[13]

P.Yang, R.Wang, H.Zhang, J. Zhao, P.Wang, H.Shi, H.Yang, Chem. Commun. 2021, 57, 5086.

[14]

J. L.McHale, J. Phys. Chem. Lett. 2012, 3, 587.

[15]

H.Zhang, Z.Zhao, A. T.Turley, L. Wang, P. R.McGonigal, Y.Tu, Y.Li, Z.Wang, R. T. K. Kwok, J. W. Y.Lam, B. Z.Tang, Adv. Mater. 2020, 32, 2001457.

[16]

M.Chen, H.Nie, B.Song, L. Li, J. Z.Sun, A.Qin, B. Z.Tang, J. Mater. Chem. C 2016, 4, 2901.

[17]

Y.Tu, J.Liu, H.Zhang, Q. Peng, J. W. Y.Lam, B. Z.Tang, Angew. Chem. Int. Ed. 2019, 58, 14911.

[18]

F.Wuerthner, T. E.Kaiser, C. RSaha-Moeller, Angew. Chem. Int. Ed. 2011, 50, 3376.

[19]

F.Wang, F.Gan, C.Shen, H. Qiu, J. Am. Chem. Soc. 2020, 142, 16167.

[20]

R.Hu, E.Lager, A.Aguilar-Aguilar, J.Liu, J. W. Y. Lam, H. H. Y.Sung, I. D.Williams, Y.Zhong, K. S.Wong, E. Peña-Cabrera, B. Z.Tang, J. Phys. Chem. C 2009, 113, 15845.

[21]

T.He, Y.Zhang, H.Zhang, J. Zhao, H.Shi, H.Yang, P.Yang, ChemSusChem 2023, 16, e202300500.

[22]

J.-M.Lehn, Chem. Soc. Rev. 2007, 36, 151.

[23]

J. J.Piet, W.Schuddeboom, B. R.Wegewijs, F. C.Grozema, J. M.Warman, J. Am. Chem. Soc. 2001, 123, 5337.

[24]

E.Vauthey, ChemPhysChem 2012, 13, 2001.

[25]

S. Y.Lim, W.Shen, Z.Gao, Chem. Soc. Rev. 2015, 44, 362.

[26]

P.Yang, Z.Yang, J. Energy Chem. 2020, 50, 365.

[27]

Y.Mu, N.Wang, Z.Sun, J. Wang, J.Li, J.Yu, Chem. Sci. 2016, 7, 3564.

[28]

P.Yang, J.Zhao, L.Zhang, L. Li, Z.Zhu, Chem. Eur. J. 2015, 21, 8561.

[29]

D.Wang, J.-F.Chen, L.Dai, Part. Part. Syst. Char. 2015, 32, 515.

[30]

H.Yang, Y.Liu, Z.Guo, B. Lei, J.Zhuang, X.Zhang, Z.Liu, C.Hu, Nat. Commun. 2019, 10, 1789.

[31]

X.Mu, J.Wang, H.He, Q.Li, B.Yang, J. Wang, H.Liu, Y.Gao, L.Ouyang, S.Sun, Q.Ren, X.Shi, W.Hao, Q. Fei, J.Yang, L.Li, R.Vest, T.Wyss-Coray, J.Luo, X.-D.Zhang, Sci. Adv. 2021, 7, eabk1210.

[32]

F. S.Freyria, J. M.Cordero, J. R.Caram, S.Doria, A.Dodin, Y.Chen, A. P. Willard, M. G.Bawendi, Nano Lett. 2017, 17, 7665.

[33]

S.Manzetti, T.Lu, H.Behzadi, M. D. Estrafili, H.-L. TLe, H.Vach, RSC Adv. 2015, 5, 78192.

[34]

X.Wang, Z.Liu, X.Yan, T. Lu, W.Zheng, W.Xiong, Chem. Eur. J. 2022, 28, e202103815.

[35]

P.Yang, Y.Zhang, H.Zhang, J. Zhao, Z.Wei, H.Shi, Z.Zheng, Y.Huang, H. Yang, ACS Catal. 2022, 12, 6276.

[36]

M. E.Mohanty, C.Madhu, V. L.Reddy, M. Paramasivam, P. R.Bangal, V. J.Rao, Phys. Chem. Chem. Phys. 2017, 19, 9118.

[37]

N. J.Hestand, F. C.Spano, Acc. Chem. Res. 2017, 50, 341.

[38]

E. A.Margulies, L. E.Shoer, S. W.Eaton, M. R. Wasielewski, Phys. Chem. Chem. Phys. 2014, 16, 23735.

[39]

J.Zhang, X.Liang, C.Zhang, L. Lin, W.Xing, Z.Yu, G.Zhang, X.Wang, Angew. Chem. Int. Ed. 2022, 61, e2022108.

[40]

M.Liu, C.Wei, H.Zhuzhang, J. Zhou, Z.Pan, W.Lin, Z.Yu, G.Zhang, X. Wang, Angew. Chem. Int. Ed. 2022, 61, e202113389.

[41]

W.-C.Chen, Y.-C.Chang, Phys. Chem. Chem. Phys. 2021, 23, 18163.

[42]

S.Atahan-Evrenk, F. B. Atalay, J. Phys. Chem. A 2019, 123, 7855.

[43]

C.Lin, T.Kim, J. D.Schultz, R. M.Young, M. R.Wasielewski, Nat. Chem. 2022, 14, 786.

[44]

G.Ran, J.Zeb, Y.Song, P. A. Denis, U.Ghani, W.Zhang, J. Phys. Chem. C 2022, 126, 3872.

[45]

F.Li, Z.Zheng, S.Xia, L. Yu, J. Mol. Struct. 2020, 1219, 128480.

[46]

Z.-L.Li, L.-S.Zhou, Y.-H.Wei, H.-L. Peng, K.Huang, Ind. Eng. Chem. Res. 2020, 59, 13696.

[47]

J.Zhang, T.Lu, Phys. Chem. Chem. Phys. 2021, 23, 20323.

[48]

Y.Sheng, W.Li, L.Xu, Y.Zhu, Adv. Mater. 2022, 34, 2102354.

[49]

Y.Guo, Q.Zhou, J.Nan, W. Shi, F.Cui, Y.Zhu, Nat. Commun. 2022, 13, 2067.

[50]

H.Lin, J.Wang, J.Zhao, Y. Zhuang, B.Liu, Y.Zhu, H.Jia, K.Wu, J.Shen, X.Fu, X.Zhang, J.Long, Angew. Chem. Int. Ed. 2022, 61, e202117645.

[51]

P.Yang, Q.Zhang, Y.Zhang, H. Zhang, J.Zhao, H.Shi, L.Liang, Y.Huang, Z. Zheng, H.Yang, ACS Catal. 2023, 13, 3723.

[52]

Z.Bi, C.Feng, D.Wang, X. Ge, H.Tang, Colloids Surf. A. 2012, 407, 91.

[53]

A.Moncho-Jorda, F.Martinez-Lopez, R.Hidalgo-Alvarez, J. Colloid. Interf. Sci. 2002, 249, 405.

[54]

C.Bie, B.Zhu, L.Wang, H. Yu, C.Jiang, T.Chen, J.Yu, Angew. Chem. Int. Ed. 2022, 61, e202212045.

[55]

W.Chao, Y.Li, X.Sun, G. Cao, C.Wang, S.-H.Ho, Chem. Eng. J. 2021, 405, 126703.

[56]

S.Chaudhury, S.Lyskov, J. J.Gray, Bioinformatics, 2010, 26, 689.

[57]

V.Hornak, R.Abel, A.Okur, B. Strockbine, A.Roitberg, C.Simmerling, Proteins 2006, 65, 712.

[58]

P.Eastman, M. S.Friedrichs, J. D.Chodera, R. J.Radmer, C. M.Bruns, J. P.Ku, K. A. Beauchamp, T. J.Lane, L. P.Wang, D.Shukla, T.Tye, M.Houston, T.Stich, C.Klein, M. R. Shirts, V. S.Pande, J. Chem. Theory. Comput. 2013, 9, 461.

[59]

S.Piana, K.Lindorff-Larsen, D. E.Shaw, Biophys J. 2011, 100, L47.

[60]

W. L.Jorgensen, J.Chandrasekhar, J. D.Madura, R. W.Impey, M. L.Klein, J. Chem. Phys. 1983, 79, 926.

[61]

J.Tirado-Rives, W. L.Jorgensen, J. Chem. Theory. Comput. 2008, 4, 297.

[62]

T.Lu, F.Chen, J. Comput. Chem. 2012, 33, 580.

[63]

W.Humphrey, A.Dalke, K.Schulten, J. Mol. Graph. 1996, 14, 33.

RIGHTS & PERMISSIONS

2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

169

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/