Installing hydrogen bonds as a general strategy to control viscosity sensitivity of molecular rotor fluorophores

Baoxing Shen, Lihua Liu, Yubo Huang, Jichun Wu, Huan Feng, Yu Liu, He Huang, Xin Zhang

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 421. DOI: 10.1002/agt2.421
RESEARCH ARTICLE

Installing hydrogen bonds as a general strategy to control viscosity sensitivity of molecular rotor fluorophores

Author information +
History +

Abstract

Molecular rotor-based fluorophores (RBFs) activate fluorescence upon increase of micro-viscosity, thus bearing a broad application promise in many fields. However, it remains a challenge to control how fluorescence of RBFs responds to viscosity changes. Herein, we demonstrate that the formation and regulation of intramolecular hydrogen bonds in the excited state of RBFs could modulate their rotational barrier, leading to a rational control of how their fluorescence can be activated by micro-viscosity. Based on this strategy, a series of RBFs were developed based on 4-hydroxybenzylidene-imidazolinone (HBI) that span a wide range of viscosity sensitivity. Combined with the AggTag method that we previously reported, the varying viscosity sensitivity and emission spectra of these probes enabled a dualcolor imaging strategy that detects both protein oligomers and aggregates during the multistep aggregation process of proteins in live cells. In summary, our work indicates that installing intracellular excited state hydrogen bonds to RBFs allows for a rational control of rotational barrier, thus allow for a fine tune of their viscosity sensitivity. Beyond RBFs, we envision similar strategies can be applied to control the fluorogenic behavior of a large group of fluorophores whose emission is dependent on excited state rotational motion, including aggregation-induced emission fluorophores.

Keywords

fluorescent probe / intramolecular hydrogen bond / protein aggregation / rotor-based fluorophores / viscosity sensitivity

Cite this article

Download citation ▾
Baoxing Shen, Lihua Liu, Yubo Huang, Jichun Wu, Huan Feng, Yu Liu, He Huang, Xin Zhang. Installing hydrogen bonds as a general strategy to control viscosity sensitivity of molecular rotor fluorophores. Aggregate, 2024, 5(1): 421 https://doi.org/10.1002/agt2.421

References

[1]
S. T. Ye, C. H. Hsiung, Y. Q. Tang, X. Zhang, Acc. Chem. Res. 2022, 55, 381.
CrossRef Google scholar
[2]
X. Liu, W. Chi, Q. Qiao, S. V. Kokate, E. P. Cabrera, Z. Xu, X. Liu, Y.-T. Chang, ACS Sens. 2020, 5, 731.
CrossRef Google scholar
[3]
W. L. Goh, M. Y. Lee, T. L. Joseph, S. T. Quah, C. J. Brown, C. Verma, S. Brenner, F. J. Ghadessy, Y. N. Teo, J. Am. Chem. Soc. 2014, 136, 6159.
CrossRef Google scholar
[4]
M. A. Haidekker, E. A. Theodorakis, Org. Biomol. Chem. 2007, 5, 1669.
CrossRef Google scholar
[5]
M. K. Kuimova, Phys. Chem. Chem. Phys. 2012, 14, 12671.
CrossRef Google scholar
[6]
Y. Liu, C. H. Wolstenholme, G. C. Carter, H. Liu, H. Hu, L. S. Grainger, K. Miao, M. Fares, C. A. Hoelzel, H. P. Yennawar, G. Ning, M. Du, L. Bai, X. Li, X. Zhang, J. Am. Chem. Soc. 2018, 140, 7381.
CrossRef Google scholar
[7]
H. Qian, M. E. Cousins, E. H. Horak, A. Wakefield, M. D. Liptak, I. Aprahamian, Nat. Chem. 2017, 9, 83.
CrossRef Google scholar
[8]
V. I. Stsiapura, A. A. Maskevich, V. A. Kuzmitsky, V. N. Uversky, I. M. Kuznetsova, K. K. Turoverov, J. Phys. Chem. B 2008, 112, 15893.
CrossRef Google scholar
[9]
T. T. Vu, R. Méallet-Renault, G. Clavier, B. A. Trofimov, M. K. Kuimova, J. Mater. Chem. C 2016, 4, 2828.
CrossRef Google scholar
[10]
S. Sasaki, G. P. C. Drummen, G.-i. Konishi, J. Mater. Chem. C 2016, 4, 2731.
CrossRef Google scholar
[11]
Z. R. Grabowski, K. Rotkiewicz, W. Rettig, Chem. Rev. 2003, 103, 3899.
CrossRef Google scholar
[12]
M. S. Baranov, K. A. Lukyanov, A. O. Borissova, J. Shamir, D. Kosenkov, L. V. Slipchenko, L. M. Tolbert, I. V. Yampolsky, K. M. Solntsev, J. Am. Chem. Soc. 2012, 134, 6025.
CrossRef Google scholar
[13]
A. Kitamura, K. Nagata, M. Kinjo, Int. J. Mol. Sci. 2015, 16, 6076.
CrossRef Google scholar
[14]
W. T. Yu, T. W. Wu, C. L. Huang, I. C. Chen, K. T. Tan, Chem. Sci. 2016, 7, 301.
CrossRef Google scholar
[15]
S. Zhang, M. Liu, L. Y. F. Tan, Q. Hong, Z. L. Pow, T. C. Owyong, S. Ding, W. W. H. Wong, Y. Hong, Chem. Asian J. 2019, 14, 904.
CrossRef Google scholar
[16]
A. Baldridge, S. R. Samanta, N. Jayaraj, V. Ramamurthy, L. M. Tolbert, J. Am. Chem. Soc. 2011, 133, 712.
CrossRef Google scholar
[17]
J. W. Park, Y. M. Rhee, J. Am. Chem. Soc. 2016, 138, 13619.
CrossRef Google scholar
[18]
C. H. Wolstenholme, H. Hu, S. Ye, B. E. Funk, D. Jain, C. H. Hsiung, G. Ning, Y. Liu, X. Li, X. Zhang, J. Am. Chem. Soc. 2020, 142, 17515.
CrossRef Google scholar
[19]
S. Ye, H. Zhang, J. Fei, C. H. Wolstenholme, X. Zhang, Angew. Chem. Int. Ed. 2021, 60, 1339.
CrossRef Google scholar
[20]
A. Baldridge, S. Feng, Y. T. Chang, L. M. Tolbert, ACS Comb. Sci. 2011, 13, 214.
CrossRef Google scholar
[21]
C. L. Walker, K. A. Lukyanov, I. V. Yampolsky, A. S. Mishin, A. S. Bommarius, A. M Duraj-Thatte, B. Azizi, L. M. Tolbert, K. M. Solntsev, Curr. Opin. Chem. Biol. 2015, 27, 64.
CrossRef Google scholar
[22]
G. Feng, C. Luo, H. Yi, L. Yuan, B. Lin, X. Luo, X. Hu, H. Wang, C. Lei, Z. Nie, S. Yao, Nucleic. Acids. Res. 2017, 45, 10380.
CrossRef Google scholar
[23]
Y. H. Hsu, Y. A. Chen, H. W. Tseng, Z. Zhang, J. Y. Shen, W. T. Chuang, T. C. Lin, C. S. Lee, W. Y. Hung, B. C. Hong, S. H. Liu, P. T. Chou, J. Am. Chem. Soc. 2014, 136, 11805.
CrossRef Google scholar
[24]
C. C. Hsieh, P. T. Chou, C. W. Shih, W. T. Chuang, M. W. Chung, J. Lee, T. Joo, J. Am. Chem. Soc. 2011, 133, 2932.
CrossRef Google scholar
[25]
S. Sabouri, M. Liu, S. Zhang, B. Yao, H. Soleimaninejad, A. A. Baxter, G. Armendariz-Vidales, P. Subedi, C. Duan, X. Lou, C. F. Hogan, B. Heras, I. K. H. Poon, Y. Hong, Adv. Healthc. Mater. 2021, 10, 2101300.
[26]
N. Gao, Z. Liu, H. Zhang, C. Liu, D. Yu, J. Ren, X. Qu, Angew. Chem. Int. Ed. 2022, 61, e202115336.
[27]
S. C. Hong, D. P. Murale, M. Lee, S. M. Lee, J. S. Park, J. S. Lee, Angew. Chem. Int. Ed. 2017, 56, 14642.
CrossRef Google scholar
[28]
J. Li, P. B. Lillehoj, Angew. Chem. Int. Ed. 2022, 61, e202200206.
[29]
W. Wan, L. Zeng, W. Jin, X. Chen, D. Shen, Y. Huang, M. Wang, Y. Bai, H. Lyu, X. Dong, Z. Gao, L. Wang, X. Liu, Y. Liu, Angew. Chem. Int. Ed. 2021, 60, 25865.
CrossRef Google scholar
[30]
K. N. Wang, L. Y. Liu, D. Mao, S. Xu, C. P. Tan, Q. Cao, Z. W. Mao, B. Liu, Angew. Chem. Int. Ed. 2021, 60, 15095.
CrossRef Google scholar
[31]
S. Nath, J. Meuvis, J. Hendrix, S. A. Carl, Y. Engelborghs, Biophys. J. 2010, 98, 1302.
CrossRef Google scholar
[32]
H. Olzscha, S. M. Schermann, A. C. Woerner, S. Pinkert, M. H. Hecht, G. G. Tartaglia, M. Vendruscolo, M. Hayer-Hartl, F. U. Hartl, R. M. Vabulas, Cell 2011, 144, 67.
CrossRef Google scholar
[33]
D. E. Williams, E. A. Dolgopolova, P. J. Pellechia, A. Palukoshka, T. J. Wilson, R. Tan, J. M. Maier, A. B. Greytak, M. D. Smith, J. A. Krause, N. B. Shustova, J. Am. Chem. Soc. 2015, 137, 2223.
CrossRef Google scholar
[34]
S. Kaushik, A. M. Cuervo, Nat. Med. 2015, 21, 1406.
CrossRef Google scholar
[35]
B. Shen, K. H. Jung, S. Ye, C. A. Hoelzel, C. H. Wolstenholme, H. Huang, Y. Liu, X. Zhang, Aggregate 2022, 4, e301.
CrossRef Google scholar
[36]
L. H. Liu, Y. B. Huang, Y. F. Zhou, Y. Zhao, J. Z. Qi, X. Zhang, B. X. Shen, TrAC Trends Anal. Chem. 2022, 157, 116764.
CrossRef Google scholar
[37]
G. V. Los, L. P. Encell, M. G. McDougall, D. D. Hartzell, N. Karassina, C. Zimprich, M. G. Wood, R. Learish, R. F. Ohana, M. Urh, D. Simpson, J. Mendez, K. Zimmerman, P. Otto, G. Vidugiris, J. Zhu, A. Darzins, D. H. Klaubert, R. F. Bulleit, K. V. Wood, ACS Chem. Biol. 2008, 3, 373.
CrossRef Google scholar
[38]
G. Matsumoto, S. Kim, R. I. Morimoto, J. Biol. Chem. 2006, 281, 4477.
CrossRef Google scholar
[39]
Q. Xu, Y. Ma, Y. Sun, D. Li, X. Zhang, C. Liu, Aggregate 2023, 4, e333.
[40]
S. Tang, S. Ye, X. Zhang, Natl. Sci. Rev. 2021, 8, nwab013.
[41]
J. Y. Ma, Y. X. Wang, Y. Huang, Y. Zhang, Y. X. Cui, D. M. Kong, Aggregate 2022, 3, e166.
[42]
J. Liang, B. Z. Tang, B. Liu, Chem. Soc. Rev. 2015, 44, 2798.
CrossRef Google scholar
[43]
S. Gozem, H. L. Luk, I. Schapiro, M. Olivucci, Chem. Rev. 2017, 117, 13502.
CrossRef Google scholar
[44]
J. Qian, B. Z. Tang, Chem 2017, 3, 56.
CrossRef Google scholar
[45]
J. A. Robson, M. Kubankova, T. Bond, R. A. Hendley, A. J. P. White, M. K. Kuimova, J.Wilton-Ely, Angew. Chem. Int. Ed. 2020, 59, 21431.
CrossRef Google scholar
[46]
T. C. Owyong, P. Subedi, J. Deng, E. Hinde, J. J. Paxman, J. M. White, W. Chen, B. Heras, W. W. H. Wong, Y. Hong, Angew. Chem. Int. Ed. 2020, 59, 10129.
CrossRef Google scholar
[47]
J. Labbadia, R. I. Morimoto, Trends Biochem. Sci. 2013, 38, 378.
CrossRef Google scholar
[48]
K. Miao, L. Wei, ACS Cent. Sci. 2020, 6, 478.
CrossRef Google scholar
[49]
A. Aliyan, N. P. Cook, A. A. Marti, Chem. Rev. 2019, 119, 11819.
CrossRef Google scholar
[50]
N. P. Cook, K. Kilpatrick, L. Segatori, A. A. Marti, J. Am. Chem. Soc. 2012, 134, 20776.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/