Bright dual-color electrochemiluminescence of a structurally determined Pt1Ag18 nanocluster

Bing Yin, Lirong Jiang, Xiaojian Wang, Ying Liu, Kaiyang Kuang, Mengmeng Jing, Chunmin Fang, Chuanjun Zhou, Shuang Chen, Manzhou Zhu

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 417. DOI: 10.1002/agt2.417
RESEARCH ARTICLE

Bright dual-color electrochemiluminescence of a structurally determined Pt1Ag18 nanocluster

Author information +
History +

Abstract

Metal nanoclusters possess excellent electrochemical, optical, and catalytic properties, but correlating these properties remains challenging, which is the foundation to generate electrochemiluminescence (ECL). Herein, we report for the first time that a structurally determined Pt1Ag18 nanocluster generates intense ECL and simultaneously enhances the ECL of carbon dots (CDs) via an electrocatalytic effect. Pt1Ag18 nanocluster show aggregation-induced emission enhancement and aggregation-induced ECL enhancement under light and electrochemical stimulation, respectively. In the presence of tripropylamine (TPrA) as a coreactant, solid Pt1Ag18 shows unprecedented ECL efficiency, which is more than nine times higher than that of 1 mM Ru(bpy)32+ with the same TPrA concentration. Potential-resolved ECL spectra reveal two ECL emission bands in the presence of TPrA. The ECL emission centered at 650 nm is assigned to the solid Pt1Ag18 nanocluster, consistent with the peak wavelength in self-annihilation ECL and photoluminescence of the solid state. The ECL emission centered at 820 nm is assigned to the CDs on the glassy carbon electrode. The electrocatalytic effect of the nanoclusters enhanced the ECL of the CDs by a factor of more than 180 in comparison to that without nanoclusters. Based on the combined optical and electrochemical results, the ECL generation pathways and mechanisms of Pt1Ag18 and CDs are proposed. These findings are extremely promising for designing multifunctional nanocluster luminophores with strong emissions and developing ratiometric sensing devices.

Keywords

AIECLE / AIEE / electrochemiluminescence / nanocluster / photoluminescence / structure

Cite this article

Download citation ▾
Bing Yin, Lirong Jiang, Xiaojian Wang, Ying Liu, Kaiyang Kuang, Mengmeng Jing, Chunmin Fang, Chuanjun Zhou, Shuang Chen, Manzhou Zhu. Bright dual-color electrochemiluminescence of a structurally determined Pt1Ag18 nanocluster. Aggregate, 2024, 5(1): 417 https://doi.org/10.1002/agt2.417

References

[1]
R. Jin, C. Zeng, M. Zhou, Y. Chen, Chem. Rev. 2016, 116, 10346.
CrossRef Google scholar
[2]
I. Chakraborty, T. Pradeep, Chem. Rev. 2017, 117, 8208.
CrossRef Google scholar
[3]
K. N. Swanick, M. Hesari, M. S. Workentin, Z. Ding, J. Am. Chem. Soc. 2012, 134, 15205.
CrossRef Google scholar
[4]
M. Hesari, Z. Ding, J. Am. Chem. Soc. 2021, 143, 19474.
CrossRef Google scholar
[5]
S. Chen, H. Ma, J. W. Padelford, W. Qinchen, W. Yu, S. Wang, M. Zhu, G. Wang, J. Am. Chem. Soc. 2019, 141, 9603.
CrossRef Google scholar
[6]
H. Peng, Z. Huang, H. Deng, W. Wu, K. Huang, Z. Li, W. Chen, J. Liu, Angew. Chem. Int. Ed. 2020, 59, 9982.
CrossRef Google scholar
[7]
R. Tian, S. Zhang, M. Li, Y. Zhou, B. Lu, D. Yan, M. Wei, D. G. Evans, X. Duan, Adv. Funct. Mater. 2015, 25, 5006.
CrossRef Google scholar
[8]
W. Miao, Chem. Rev. 2008, 108, 2506.
CrossRef Google scholar
[9]
M. M. Richter, Chem. Rev. 2004, 104, 3003.
CrossRef Google scholar
[10]
L. Li, Y. Chen, J. J. Zhu, Anal. Chem. 2017, 89, 358.
CrossRef Google scholar
[11]
Z. Liu, W. Qi, G. Xu, Chem. Soc. Rev. 2015, 44, 3117.
CrossRef Google scholar
[12]
W. Miao, J. P. Choi, A. J. Bard, J. Am. Chem. Soc. 2002, 124, 14478.
[13]
C. Ma, S. Wu, Y. Zhou, H. F. Wei, J. Zhang, Z. Chen, J. J. Zhu, Y. Lin, W. Zhu, Angew. Chem. Int. Ed. 2021, 60, 4907.
CrossRef Google scholar
[14]
A. Zanut, A. Fiorani, S. Canola, T. Saito, N. Ziebart, S. Rapino, S. Rebeccani, A. Barbon, T. Irie, H. P. Josel, F. Negri, M. Marcaccio, M. Windfuhr, K. Imai, G. Valenti, F. Paolucci, Nat. Commun. 2020, 11, 2668.
[15]
S. Deng, H. Ju, Analyst 2013, 138, 43.
CrossRef Google scholar
[16]
S. Liu, H. Yuan, H. Bai, P. Zhang, F. Lv, L. Liu, Z. Dai, J. Bao, S. Wang, J. Am. Chem. Soc. 2018, 140, 2284.
CrossRef Google scholar
[17]
J. Dong, Y. Lu, Y. Xu, F. Chen, J. Yang, Y. Chen, J. Feng, Nature 2021, 596, 244.
CrossRef Google scholar
[18]
Z. Ding, B. M. Quinn, S. K. Haram, L. E. Pell, B. A. Korgel, A. J. Bard, Science 2002, 296, 1293.
CrossRef Google scholar
[19]
S. Carrara, F. Arcudi, M. Prato, L. De Cola, Angew. Chem. Int. Ed. 2017, 56, 4757.
CrossRef Google scholar
[20]
T. Wang, D. Wang, J. W. Padelford, J. Jiang, G. Wang, J. Am. Chem. Soc. 2016, 138, 6380.
CrossRef Google scholar
[21]
L. Yang, B. Zhang, L. Fu, K. Fu, G. Zou, Angew. Chem. Int. Ed. 2019, 58, 6901.
CrossRef Google scholar
[22]
R. Luo, H. Lv, Q. Liao, N. Wang, J. Yang, Y. Li, K. Xi, X. Wu, H. Ju, J. Lei, Nat. Commun. 2021, 12, 6808.
[23]
H. Peng, Z. Huang, Y. Sheng, X. Zhang, H. Deng, W. Chen, J. Liu, Angew. Chem. Int. Ed. 2019, 58, 11691.
CrossRef Google scholar
[24]
E. H. Doeven, E. M. Zammit, G. J. Barbante, C. F. Hogan, N. W. Barnett, P. S. Francis, Angew. Chem. Int. Ed. 2012, 51, 4354.
CrossRef Google scholar
[25]
E. H. Doeven, E. M. Zammit, G. J. Barbante, P. S. Francis, N. W. Barnett, C. F. Hogan, Chem. Sci. 2013, 4, 977.
CrossRef Google scholar
[26]
W. Guo, P. Zhou, L. Sun, H. Ding, B. Su, Angew. Chem. Int. Ed. 2021, 60, 2089.
CrossRef Google scholar
[27]
J. Tan, L. Xu, T. Li, B. Su, J. Wu, Angew. Chem. Int. Ed. 2014, 53, 9822.
CrossRef Google scholar
[28]
L. Xu, Z. Zhou, C. Zhang, Y. He, B. Su, Chem. Commun. 2014, 50, 9097.
CrossRef Google scholar
[29]
Y. Wang, G. Zhao, H. Chi, S. Yang, Q. Niu, D. Wu, W. Cao, T. Li, H. Ma, Q. Wei, J. Am. Chem. Soc. 2021, 143, 504.
CrossRef Google scholar
[30]
E. Climent, K. Rurack, Angew. Chem. Int. Ed. 2021, 60, 26287.
CrossRef Google scholar
[31]
F. Yang, J.-S. Yao, S.-C. Bu, H.-Y. Meng, Y. Zhuo, X. Zhong, R. Yuan, Anal. Chem. 2021, 93, 15493.
CrossRef Google scholar
[32]
X. Ma, Q. Kang, M. Li, L. Fu, G. Zou, D. Shen, Anal. Chem. 2022, 94, 3637.
CrossRef Google scholar
[33]
C. Ma, W. Wu, Y. Peng, M.-X. Wang, G. Chen, Z. Chen, J.-J. Zhu, Anal. Chem. 2018, 90, 1334.
CrossRef Google scholar
[34]
T. Chen, S. Yang, J. Chai, Y. Song, J. Fan, B. Rao, H. Sheng, H. Yu, M. Zhu, Sci. Adv. 2017, 3, e1700956.
[35]
H. Döllefeld, H. Weller, A. Eychmüller, J. Phys. Chem. B 2002, 106, 5604.
CrossRef Google scholar
[36]
J. Zhang, C. Rowland, Y. Liu, H. Xiong, S. Kwon, E. Shevchenko, R. D. Schaller, V. B. Prakapenka, S. Tkachev, T. Rajh, J. Am. Chem. Soc. 2015, 137, 742.
CrossRef Google scholar
[37]
A. Nag, P. Chakraborty, M. Bodiuzzaman, T. Ahuja, S. Antharjanam, T. Pradeep, Nanoscale 2018, 10, 9851.
CrossRef Google scholar
[38]
S. He, K. Chu, J. M. Wong, L.-Q. Yang, J. R. Adsetts, R.-Z. Zhang, Y.-H. Chen, Z.-F. Ding, J. Anal. Test. 2020, 4, 257.
CrossRef Google scholar
[39]
W. L. Wallace, A. J. Bard, J. Phys. Chem. 1979, 83, 1350.
[40]
A.-H. Wu, X.-L. Su, Y.-M. Fang, J.-J. Sun, G.-N. Chen, Electrochem. Commun. 2008, 10, 1344.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/