Engineering singlet and triplet excitons of TADF emitters by different host-guest interactions

Wei Zhang, Jie Kong, Rui Zhi An, Jiachen Zhang, Yujie Zhou, Lin-Song Cui, Meng Zhou

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 416. DOI: 10.1002/agt2.416
RESEARCH ARTICLE

Engineering singlet and triplet excitons of TADF emitters by different host-guest interactions

Author information +
History +

Abstract

Understanding the host-guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and triplet excitons by using different kinds of host-guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host-guest interaction-modulated exciton recombination by using time-resolved spectroscopy. We found that the early-time relaxation is accelerated in polar polymer because dipole-dipole interaction facilitates the stabilization of the 1CT state. However, an opposite trend is observed in longer delay time, and faster decay in the less polar polymer is ascribed to the π-π interaction that plays the dominant role in the later stage of the excited state. Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host-guest interactions based on their electronic characteristics.

Keywords

host-guest interaction / singlet / TADF / triplet

Cite this article

Download citation ▾
Wei Zhang, Jie Kong, Rui Zhi An, Jiachen Zhang, Yujie Zhou, Lin-Song Cui, Meng Zhou. Engineering singlet and triplet excitons of TADF emitters by different host-guest interactions. Aggregate, 2024, 5(1): 416 https://doi.org/10.1002/agt2.416

References

[1]
A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys. 1953, 50, 64.
CrossRef Google scholar
[2]
M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys. 1963, 38, 2042.
CrossRef Google scholar
[3]
M. Baldo, D. O’brien, M. Thompson, S. Forrest, Phys. Rev. B 1999, 60, 14422.
CrossRef Google scholar
[4]
M. Segal, M. Baldo, R. J. Holmes, S. Forrest, Z. Soos, Phys. Rev. B 2003, 68, 075211.
[5]
H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.
CrossRef Google scholar
[6]
H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nat. Commun. 2014, 5, 4016.
[7]
K. Goushi, K. Yoshida, K. Sato, C. Adachi, Nat. Photonics 2012, 6, 253.
CrossRef Google scholar
[8]
S. Shao, L. Wang, Aggregate 2020, 1, 45.
CrossRef Google scholar
[9]
L.-S. Cui, H. Nomura, Y. Geng, J. U. Kim, H. Nakanotani, C. Adachi, Angew. Chem. Int. Ed. 2017, 56, 1571.
CrossRef Google scholar
[10]
Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931.
CrossRef Google scholar
[11]
Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915.
CrossRef Google scholar
[12]
M. Urban, P. H Marek-Urban, K. Durka, S. Luli’nski, P. Pander, A. P. Monkman, Angew. Chem. Int. Ed. 2023, 62, e202217530.
[13]
P. K. Samanta, D. Kim, V. Coropceanu, J.-L. Brédas, J. Am. Chem. Soc. 2017, 139, 4042.
CrossRef Google scholar
[14]
Y. Shi, H. Ma, Z. Sun, W. Zhao, G. Sun, Q. Peng, Angew. Chem. Int. Ed. 2022, 61, e202213463.
[15]
F. B. Dias, T. J. Penfold, A. Monkman, Methods Appl. Fluoresc. 2017, 5, 012001.
CrossRef Google scholar
[16]
T. J. Penfold, F. B. Dias, A. P. Monkman, Chem. Commun. 2018, 54, 3926.
CrossRef Google scholar
[17]
R. Noriega, E. S. Barnard, B. Ursprung, B. L. Cotts, S. B. Penwell, P. J. Schuck, N. S. Ginsberg, J. Am. Chem. Soc. 2016, 138, 13551.
CrossRef Google scholar
[18]
D. K. A. Phan Huu, S. Saseendran, R. Dhali, L. G. Franca, K. Stavrou, A. Monkman, A. Painelli, J. Am. Chem. Soc. 2022, 144, 15211.
CrossRef Google scholar
[19]
X. Wu, B.-K. Su, D.-G. Chen, D. Liu, C.-C. Wu, Z.-X. Huang, T.-C. Lin, C.-H. Wu, M. Zhu, E. Y. Li, W.-Y. Hung, W. Zhu, P.-T. Chou, Nat. Photonics 2021, 15, 780.
CrossRef Google scholar
[20]
C. Wang, Q. Zhang, J. Phys. Chem. C 2019, 123, 4407.
CrossRef Google scholar
[21]
S. Garain, S. M. Wagalgave, A. A. Kongasseri, B. C. Garain, S. N. Ansari, G. Sardar, D. Kabra, S. K. Pati, S. J. George, J. Am. Chem. Soc. 2022, 144, 10854.
CrossRef Google scholar
[22]
M. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P. Monkman, Nat. Commun. 2016, 7, 13680.
[23]
R. J. Vázquez, J. H. Yun, A. K. Muthike, M. Howell, H. Kim, I. K. Madu, T. Kim, P. Zimmerman, J. Y. Lee, T. Goodson III, J. Am. Chem. Soc. 2020, 142, 8074.
CrossRef Google scholar
[24]
L.-S. Cui, A. J. Gillett, S.-F. Zhang, H. Ye, Y. Liu, X.-K. Chen, Z.-S. Lin, E. W. Evans, W. K. Myers, T. K. Ronson, H. Nakanotani, S. Reineke, J.-L. Bredas, C. Adachi, R. H. Friend, Nat. Photonics 2020, 14, 636.
CrossRef Google scholar
[25]
S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H. Miyazaki, C. Adachi, Nat. Mater. 2015, 14, 330.
CrossRef Google scholar
[26]
R. K. Koninti, K. Miyata, M. Saigo, K. Onda, J. Phys. Chem. C 2021, 125, 17392.
CrossRef Google scholar
[27]
S. Weissenseel, A. Gottscholl, R. Bönnighausen, V. Dyakonov, A. Sperlich, Sci. Adv. 2021, 7, eabj9961.
CrossRef Google scholar
[28]
H. Wu, X.-C. Fan, H. Wang, F. Huang, X. Xiong, Y.-Z. Shi, K. Wang, J. Yu, X.-H. Zhang, Aggregate 2023, 4, e243.
[29]
Q. Li, Z. Li, Acc. Chem. Res. 2020, 53, 962.
CrossRef Google scholar
[30]
O. Ostroverkhova, Chem. Rev. 2016, 116, 13279.
CrossRef Google scholar
[31]
B. L. Cotts, D. G. McCarthy, R. Noriega, S. B. Penwell, M. Delor, D. D. Devore, S. Mukhopadhyay, T. S. De Vries, N. S. Ginsberg, ACS Energy Lett. 2017, 2, 1526.
CrossRef Google scholar
[32]
Z. Kuang, G. He, H. Song, X. Wang, Z. Hu, H. Sun, Y. Wan, Q. Guo, A. Xia, J. Phys. Chem. C 2018, 122, 3727.
CrossRef Google scholar
[33]
W. Zhang, H. Song, J. Kong, Z. Kuang, M. Li, Q. Guo, C.-f. Chen, A. Xia, J. Phys. Chem. C 2019, 123, 19322.
CrossRef Google scholar
[34]
M.-Y. Leung, M.-C. Tang, W.-L. Cheung, S.-L. Lai, M. Ng, M.-Y. Chan, V. Wing-Wah Yam, J. Am. Chem. Soc. 2020, 142, 2448.
CrossRef Google scholar
[35]
M. Saigo, K. Miyata, S. Tanaka, H. Nakanotani, C. Adachi, K. Onda, J. Phys. Chem. Lett. 2019, 10, 2475.
CrossRef Google scholar
[36]
H. Yersin, R. Czerwieniec, L. Mataranga-Popa, J.-M. Mewes, G. Cheng, C.-M. Che, M. Saigo, S. Kimura, K. Miyata, K. Onda, Adv. Funct. Mater. 2022, 32, 2201772.
[37]
J. Lee, N. Aizawa, M. Numata, C. Adachi, T. Yasuda, Adv. Mater. 2017, 29, 1604856.
[38]
J. Guo, X.-L. Li, H. Nie, W. Luo, S. Gan, S. Hu, R. Hu, A. Qin, Z. Zhao, S.-J. Su, B. Z. Tang, Adv. Funct. Mater. 2017, 27, 1606458.
[39]
Y.-Z. Shi, H. Wu, K. Wang, J. Yu, X.-M. Ou, X.-H. Zhang, Chem. Sci. 2022, 13, 3625.
CrossRef Google scholar
[40]
A. J. Gillett, A. Pershin, R. Pandya, S. Feldmann, A. J. Sneyd, A. M. Alvertis, E. W. Evans, T. H. Thomas, L.-S. Cui, B. H. Drummond, G. D. Scholes, Y. Olivier, A. Rao, R. H. Friend, D. Beljonne, Nat. Mater. 2022, 21, 1150.
CrossRef Google scholar
[41]
C. Han, C. Duan, W. Yang, M. Xie, H. Xu, Sci. Adv. 2017, 3, e1700904.
[42]
Y. Tian, H. Wang, Y. Man, N. Zhang, J. Zhang, Y. Li, C. Han, H. Xu, Chem. Sci. 2021, 12, 14519.
CrossRef Google scholar
[43]
B. Zhou, D. Yan, Adv. Funct. Mater. 2019, 29, 1807599.
[44]
W. Qiu, D. Liu, Z. Chen, Y. Gan, S. Xiao, X. Peng, D. Zhang, X. Cai, M. Li, W. Xie, G. Sun, Y. Jiao, Q. Gu, D. Ma, S.-J. Su, Matter 2023, 6, 1231.
CrossRef Google scholar
[45]
J. Han, Y. Chen, N. Li, Z. Huang, C. Yang, Aggregate 2022, 3, e182.
[46]
M. Delor, D. G. McCarthy, B. L. Cotts, T. D. Roberts, R. Noriega, D. D. Devore, S. Mukhopadhyay, T. S. De Vries, N. S. Ginsberg, J. Phys. Chem. Lett. 2017, 8, 4183.
CrossRef Google scholar
[47]
C. Deng, L. Zhang, D. Wang, T. Tsuboi, Q. Zhang, Adv. Opt. Mater. 2019, 7, 1801644.
[48]
P. Imbrasas, R. Lygaitis, P. Kleine, R. Scholz, C. Hänisch, S. Buchholtz, K. Ortstein, F. Talnack, S. C. B. Mannsfeld, S. Lenk, S. Reineke, Adv. Opt. Mater. 2021, 9, 2002153.
[49]
T. Northey, J. Stacey, T. J. Penfold, J. Mater. Chem. C 2017, 5, 11001.
CrossRef Google scholar
[50]
T. Serevičius, R. Skaisgiris, J. Dodonova, I. Fiodorova, K. Genevičius, S. Tumkevičius, K. Kazlauskas, S. Juršėnas, J. Phys. Chem. Lett. 2022, 13, 1839.
CrossRef Google scholar
[51]
T. Serevičius, R. Skaisgiris, J. Dodonova, K. Kazlauskas, S. Juršėnas, S. Tumkevičius, Phys. Chem. Chem. Phys. 2020, 22, 265.
CrossRef Google scholar
[52]
T. Serevičius, R. Skaisgiris, D. Gudeika, K. Kazlauskas, S. Juršėnas, Phys. Chem. Chem. Phys. 2022, 24, 313.
CrossRef Google scholar
[53]
K. Stavrou, L. G. Franca, A. P. Monkman, ACS Appl. Electron. Mater. 2020, 2, 2868.
CrossRef Google scholar
[54]
C. F. Madigan, V. Bulovi’c, Phys. Rev. Lett. 2003, 91, 247403.
[55]
M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson, H. Nakatsuji, et al. Gaussian 16, Revision A. 03; Gaussian, Inc.: Wallingford CT, 2016.
[56]
T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.
CrossRef Google scholar
[57]
B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH Verlag GmbH, New York 2001.
[58]
C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed., WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim 2003.
[59]
S. Wallin, J. Davidsson, J. Modin, L. Hammarström, J. Phys. Chem. A 2005, 109, 9378.
[60]
P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
CrossRef Google scholar
[61]
T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 2004, 393, 51.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by South China University of Technology; AIE Institute and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/