Engineering singlet and triplet excitons of TADF emitters by different host-guest interactions

Wei Zhang , Jie Kong , Rui Zhi An , Jiachen Zhang , Yujie Zhou , Lin-Song Cui , Meng Zhou

Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 416

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) :416 DOI: 10.1002/agt2.416
RESEARCH ARTICLE

Engineering singlet and triplet excitons of TADF emitters by different host-guest interactions

Author information +
History +
PDF

Abstract

Understanding the host-guest interactions for thermally activated delayed fluorescence (TADF) emitters is critical because the interactions between the host matrices and TADF emitters enable precise control on the optoelectronic performance, whereas technologically manipulating the singlet and triplet excitons by using different kinds of host-guest interactions remains elusive. Here, we report a comprehensive picture that rationalizes host-guest interaction-modulated exciton recombination by using time-resolved spectroscopy. We found that the early-time relaxation is accelerated in polar polymer because dipole-dipole interaction facilitates the stabilization of the 1CT state. However, an opposite trend is observed in longer delay time, and faster decay in the less polar polymer is ascribed to the π-π interaction that plays the dominant role in the later stage of the excited state. Our findings highlight the technological engineering singlet and triplet excitons using different kinds of host-guest interactions based on their electronic characteristics.

Keywords

host-guest interaction / singlet / TADF / triplet

Cite this article

Download citation ▾
Wei Zhang, Jie Kong, Rui Zhi An, Jiachen Zhang, Yujie Zhou, Lin-Song Cui, Meng Zhou. Engineering singlet and triplet excitons of TADF emitters by different host-guest interactions. Aggregate, 2024, 5(1): 416 DOI:10.1002/agt2.416

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

A. Bernanose, M. Comte, P. Vouaux, J. Chim. Phys. 1953, 50, 64.

[2]

M. Pope, H. P. Kallmann, P. Magnante, J. Chem. Phys. 1963, 38, 2042.

[3]

M. Baldo, D. O’brien, M. Thompson, S. Forrest, Phys. Rev. B 1999, 60, 14422.

[4]

M. Segal, M. Baldo, R. J. Holmes, S. Forrest, Z. Soos, Phys. Rev. B 2003, 68, 075211.

[5]

H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234.

[6]

H. Nakanotani, T. Higuchi, T. Furukawa, K. Masui, K. Morimoto, M. Numata, H. Tanaka, Y. Sagara, T. Yasuda, C. Adachi, Nat. Commun. 2014, 5, 4016.

[7]

K. Goushi, K. Yoshida, K. Sato, C. Adachi, Nat. Photonics 2012, 6, 253.

[8]

S. Shao, L. Wang, Aggregate 2020, 1, 45.

[9]

L.-S. Cui, H. Nomura, Y. Geng, J. U. Kim, H. Nakanotani, C. Adachi, Angew. Chem. Int. Ed. 2017, 56, 1571.

[10]

Y. Tao, K. Yuan, T. Chen, P. Xu, H. Li, R. Chen, C. Zheng, L. Zhang, W. Huang, Adv. Mater. 2014, 26, 7931.

[11]

Z. Yang, Z. Mao, Z. Xie, Y. Zhang, S. Liu, J. Zhao, J. Xu, Z. Chi, M. P. Aldred, Chem. Soc. Rev. 2017, 46, 915.

[12]

M. Urban, P. H Marek-Urban, K. Durka, S. Luli’nski, P. Pander, A. P. Monkman, Angew. Chem. Int. Ed. 2023, 62, e202217530.

[13]

P. K. Samanta, D. Kim, V. Coropceanu, J.-L. Brédas, J. Am. Chem. Soc. 2017, 139, 4042.

[14]

Y. Shi, H. Ma, Z. Sun, W. Zhao, G. Sun, Q. Peng, Angew. Chem. Int. Ed. 2022, 61, e202213463.

[15]

F. B. Dias, T. J. Penfold, A. Monkman, Methods Appl. Fluoresc. 2017, 5, 012001.

[16]

T. J. Penfold, F. B. Dias, A. P. Monkman, Chem. Commun. 2018, 54, 3926.

[17]

R. Noriega, E. S. Barnard, B. Ursprung, B. L. Cotts, S. B. Penwell, P. J. Schuck, N. S. Ginsberg, J. Am. Chem. Soc. 2016, 138, 13551.

[18]

D. K. A. Phan Huu, S. Saseendran, R. Dhali, L. G. Franca, K. Stavrou, A. Monkman, A. Painelli, J. Am. Chem. Soc. 2022, 144, 15211.

[19]

X. Wu, B.-K. Su, D.-G. Chen, D. Liu, C.-C. Wu, Z.-X. Huang, T.-C. Lin, C.-H. Wu, M. Zhu, E. Y. Li, W.-Y. Hung, W. Zhu, P.-T. Chou, Nat. Photonics 2021, 15, 780.

[20]

C. Wang, Q. Zhang, J. Phys. Chem. C 2019, 123, 4407.

[21]

S. Garain, S. M. Wagalgave, A. A. Kongasseri, B. C. Garain, S. N. Ansari, G. Sardar, D. Kabra, S. K. Pati, S. J. George, J. Am. Chem. Soc. 2022, 144, 10854.

[22]

M. K. Etherington, J. Gibson, H. F. Higginbotham, T. J. Penfold, A. P. Monkman, Nat. Commun. 2016, 7, 13680.

[23]

R. J. Vázquez, J. H. Yun, A. K. Muthike, M. Howell, H. Kim, I. K. Madu, T. Kim, P. Zimmerman, J. Y. Lee, T. Goodson III, J. Am. Chem. Soc. 2020, 142, 8074.

[24]

L.-S. Cui, A. J. Gillett, S.-F. Zhang, H. Ye, Y. Liu, X.-K. Chen, Z.-S. Lin, E. W. Evans, W. K. Myers, T. K. Ronson, H. Nakanotani, S. Reineke, J.-L. Bredas, C. Adachi, R. H. Friend, Nat. Photonics 2020, 14, 636.

[25]

S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H. Miyazaki, C. Adachi, Nat. Mater. 2015, 14, 330.

[26]

R. K. Koninti, K. Miyata, M. Saigo, K. Onda, J. Phys. Chem. C 2021, 125, 17392.

[27]

S. Weissenseel, A. Gottscholl, R. Bönnighausen, V. Dyakonov, A. Sperlich, Sci. Adv. 2021, 7, eabj9961.

[28]

H. Wu, X.-C. Fan, H. Wang, F. Huang, X. Xiong, Y.-Z. Shi, K. Wang, J. Yu, X.-H. Zhang, Aggregate 2023, 4, e243.

[29]

Q. Li, Z. Li, Acc. Chem. Res. 2020, 53, 962.

[30]

O. Ostroverkhova, Chem. Rev. 2016, 116, 13279.

[31]

B. L. Cotts, D. G. McCarthy, R. Noriega, S. B. Penwell, M. Delor, D. D. Devore, S. Mukhopadhyay, T. S. De Vries, N. S. Ginsberg, ACS Energy Lett. 2017, 2, 1526.

[32]

Z. Kuang, G. He, H. Song, X. Wang, Z. Hu, H. Sun, Y. Wan, Q. Guo, A. Xia, J. Phys. Chem. C 2018, 122, 3727.

[33]

W. Zhang, H. Song, J. Kong, Z. Kuang, M. Li, Q. Guo, C.-f. Chen, A. Xia, J. Phys. Chem. C 2019, 123, 19322.

[34]

M.-Y. Leung, M.-C. Tang, W.-L. Cheung, S.-L. Lai, M. Ng, M.-Y. Chan, V. Wing-Wah Yam, J. Am. Chem. Soc. 2020, 142, 2448.

[35]

M. Saigo, K. Miyata, S. Tanaka, H. Nakanotani, C. Adachi, K. Onda, J. Phys. Chem. Lett. 2019, 10, 2475.

[36]

H. Yersin, R. Czerwieniec, L. Mataranga-Popa, J.-M. Mewes, G. Cheng, C.-M. Che, M. Saigo, S. Kimura, K. Miyata, K. Onda, Adv. Funct. Mater. 2022, 32, 2201772.

[37]

J. Lee, N. Aizawa, M. Numata, C. Adachi, T. Yasuda, Adv. Mater. 2017, 29, 1604856.

[38]

J. Guo, X.-L. Li, H. Nie, W. Luo, S. Gan, S. Hu, R. Hu, A. Qin, Z. Zhao, S.-J. Su, B. Z. Tang, Adv. Funct. Mater. 2017, 27, 1606458.

[39]

Y.-Z. Shi, H. Wu, K. Wang, J. Yu, X.-M. Ou, X.-H. Zhang, Chem. Sci. 2022, 13, 3625.

[40]

A. J. Gillett, A. Pershin, R. Pandya, S. Feldmann, A. J. Sneyd, A. M. Alvertis, E. W. Evans, T. H. Thomas, L.-S. Cui, B. H. Drummond, G. D. Scholes, Y. Olivier, A. Rao, R. H. Friend, D. Beljonne, Nat. Mater. 2022, 21, 1150.

[41]

C. Han, C. Duan, W. Yang, M. Xie, H. Xu, Sci. Adv. 2017, 3, e1700904.

[42]

Y. Tian, H. Wang, Y. Man, N. Zhang, J. Zhang, Y. Li, C. Han, H. Xu, Chem. Sci. 2021, 12, 14519.

[43]

B. Zhou, D. Yan, Adv. Funct. Mater. 2019, 29, 1807599.

[44]

W. Qiu, D. Liu, Z. Chen, Y. Gan, S. Xiao, X. Peng, D. Zhang, X. Cai, M. Li, W. Xie, G. Sun, Y. Jiao, Q. Gu, D. Ma, S.-J. Su, Matter 2023, 6, 1231.

[45]

J. Han, Y. Chen, N. Li, Z. Huang, C. Yang, Aggregate 2022, 3, e182.

[46]

M. Delor, D. G. McCarthy, B. L. Cotts, T. D. Roberts, R. Noriega, D. D. Devore, S. Mukhopadhyay, T. S. De Vries, N. S. Ginsberg, J. Phys. Chem. Lett. 2017, 8, 4183.

[47]

C. Deng, L. Zhang, D. Wang, T. Tsuboi, Q. Zhang, Adv. Opt. Mater. 2019, 7, 1801644.

[48]

P. Imbrasas, R. Lygaitis, P. Kleine, R. Scholz, C. Hänisch, S. Buchholtz, K. Ortstein, F. Talnack, S. C. B. Mannsfeld, S. Lenk, S. Reineke, Adv. Opt. Mater. 2021, 9, 2002153.

[49]

T. Northey, J. Stacey, T. J. Penfold, J. Mater. Chem. C 2017, 5, 11001.

[50]

T. Serevičius, R. Skaisgiris, J. Dodonova, I. Fiodorova, K. Genevičius, S. Tumkevičius, K. Kazlauskas, S. Juršėnas, J. Phys. Chem. Lett. 2022, 13, 1839.

[51]

T. Serevičius, R. Skaisgiris, J. Dodonova, K. Kazlauskas, S. Juršėnas, S. Tumkevičius, Phys. Chem. Chem. Phys. 2020, 22, 265.

[52]

T. Serevičius, R. Skaisgiris, D. Gudeika, K. Kazlauskas, S. Juršėnas, Phys. Chem. Chem. Phys. 2022, 24, 313.

[53]

K. Stavrou, L. G. Franca, A. P. Monkman, ACS Appl. Electron. Mater. 2020, 2, 2868.

[54]

C. F. Madigan, V. Bulovi’c, Phys. Rev. Lett. 2003, 91, 247403.

[55]

M. Frisch, G. Trucks, H. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, G. Petersson, H. Nakatsuji, et al. Gaussian 16, Revision A. 03; Gaussian, Inc.: Wallingford CT, 2016.

[56]

T. Lu, F. Chen, J. Comput. Chem. 2012, 33, 580.

[57]

B. Valeur, Molecular Fluorescence: Principles and Applications, Wiley-VCH Verlag GmbH, New York 2001.

[58]

C. Reichardt, Solvents and Solvent Effects in Organic Chemistry, 3rd ed., WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim 2003.

[59]

S. Wallin, J. Davidsson, J. Modin, L. Hammarström, J. Phys. Chem. A 2005, 109, 9378.

[60]

P. J. Stephens, F. J. Devlin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.

[61]

T. Yanai, D. Tew, N. Handy, Chem. Phys. Lett. 2004, 393, 51.

RIGHTS & PERMISSIONS

2023 The Authors. Aggregate published by South China University of Technology; AIE Institute and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/