One-dimensional molecular co-crystal alloys capable of full-color emission for low-loss optical waveguide and optical logic gate

Zhenhong Qi, Yu-Juan Ma, Dongpeng Yan

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 411. DOI: 10.1002/agt2.411
RESEARCH ARTICLE

One-dimensional molecular co-crystal alloys capable of full-color emission for low-loss optical waveguide and optical logic gate

Author information +
History +

Abstract

The luminescence color of molecule-based photoactive materials is the key to the applications in lighting and optical communication. Realizing continuous regulation of emission color in molecular systems is highly desirable but still remains a challenge due to the individual emission band of purely organic molecules. Herein, a novel alloy strategy based on molecular co-crystals is reported. By adjusting the molar ratio of pyrene (Py) and fluorathene (Flu), three types of molecular co-crystal alloys (MCAs) assemblies are prepared involving Py-Flu-OFN-x%, Py-Flu-TFP-x%, Py-Flu-TCNB-x%. Multiple energy level structure and Förster resonance energy transfer (FRET) process endow materials with tunable full-spectra emission color in visible region. Impressively, these MCAs and co-crystals can be successfully applied to low optical loss waveguide and optical logic gate by virtue of all-color luminescence from blue across green to red, together with smooth surface of onedimensional microrods, which show promising applications as continuous light emitters for advance photonics applications.

Keywords

full-color emission / microrods / molecular co-crystal / optical waveguide / organic alloys

Cite this article

Download citation ▾
Zhenhong Qi, Yu-Juan Ma, Dongpeng Yan. One-dimensional molecular co-crystal alloys capable of full-color emission for low-loss optical waveguide and optical logic gate. Aggregate, 2024, 5(1): 411 https://doi.org/10.1002/agt2.411

References

[1]
J. Feldmann, N. Youngblood, M. Karpov, H. Gehring, X. Li, M. Stappers, M. Le Gallo, X. Fu, A. Lukashchuk, A. S. Raja, J. Liu, C. D. Wright, A. Sebastian, T. J. Kippenberg, W. H. P. Pernice, H. Bhaskaran, Nature 2021, 589, 52.
CrossRef Google scholar
[2]
D. P. Karothu, G. Dushaq, E. Ahmed, L. Catalano, S. Polavaram, R. Ferreira, L. Li, S. Mohamed, M. Rasras, P. Naumov, Nat. Commun. 2021, 12, 1326.
[3]
B. Zhou, Z. Qi, D. Yan, Angew. Chem. Int. Ed. 2022, 61, e202208735.
[4]
C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, W. H. P. Pernice, Nat. Photonics 2015, 9, 725.
CrossRef Google scholar
[5]
J. Ravi, M. Annadhasan, A. V. Kumar, R. Chandrasekar, Adv. Funct. Mater. 2021, 31, 2100642.
[6]
X. Lou, Y. Yang, J. Am. Chem. Soc. 2021, 143, 11976.
CrossRef Google scholar
[7]
F. Balzer, V. G. Bordo, A. C. Simonsen, H. G. Rubahn, Appl. Phys. Lett. 2002, 82, 10.
CrossRef Google scholar
[8]
M. Annadhasan, A. R. Agrawal, S. Bhunia, V. V. Pradeep, S. S. Zade, C. M. Reddy, R. Chandrasekar, Angew. Chem. Int. Ed. 2020, 59, 13852.
CrossRef Google scholar
[9]
R. Chandrasekar, Adv. Opt. Mater. 2023, 11, 2301124.
[10]
R. Chandrasekar, Chem. Commun. 2022, 58, 3415.
CrossRef Google scholar
[11]
R. Chandrasekar, Small 2021, 17, 2100277.
CrossRef Google scholar
[12]
B. Zhou, D. Yan, Chem. Sci. 2022, 13, 7429.
CrossRef Google scholar
[13]
H. Lin, Y. Ma, S. Chen, X. Wang, Angew. Chem. Int. Ed. 2023, 62, e202214214.
[14]
Z.-Q. Li, D.-X. Ma, F.-F. Xu, T.-X. Dan, Z.-L. Gong, J.-Y. Shao, Y. S. Zhao, J. Yao, Y.-W. Zhong, Angew. Chem. Int. Ed. 2022, 61, e202205033.
[15]
J. M. Halabi, E. Ahmed, L. Catalano, D. P. Karothu, R. Rezgui, P. Naumov, J. Am. Chem. Soc. 2019, 141, 14966.
CrossRef Google scholar
[16]
X.-T. Liu, K. Wang, Z. Chang, Y.-H. Zhang, J. Xu, Y. S. Zhao, X.-H. Bu, Angew. Chem. Int. Ed. 2019, 58, 13890.
CrossRef Google scholar
[17]
S. Li, B. Lu, X. Fang, D. Yan, Angew. Chem. Int. Ed. 2020, 59, 22623.
CrossRef Google scholar
[18]
Y. Shi, Q. Lv, Y. Tao, Y. Ma, X. Wang, Angew. Chem. Int. Ed. 2022, 61, e202208768.
[19]
M. Zhuo, Y. Tao, X. Wang, Y. Wu, S. Chen, L. Liao, L. Jiang, Angew. Chem. Int. Ed. 2018, 57, 11300.
CrossRef Google scholar
[20]
D. B. Amabilino, D. K. Smith, J. W. Steed, Chem. Soc. Rev. 2017, 46, 2404.
CrossRef Google scholar
[21]
D. Bučar, R. W. Lancaster, J. Bernstein, Angew. Chem. Int. Ed. 2015, 54, 6972.
CrossRef Google scholar
[22]
K. Liu, Y. Lei, H. Fu, Chem. Mat. 2020, 32, 5162.
CrossRef Google scholar
[23]
K. Liu, S. Li, L. Fu, Y. Lei, Q. Liao, H. Fu, Nanoscale 2022, 14, 6305.
CrossRef Google scholar
[24]
S. Ma, H. Sun, J. Chen, Y. Yu, H. Lu, S. Wang, J. Zhang, J. Zhao, G. Long, X. Wang, Adv. Opt. Mater. 2023, 11, 2203087.
[25]
Y. Sun, Y. Lei, W. Hu, W. Wong, J. Am. Chem. Soc. 2020, 142, 7265
CrossRef Google scholar
[26]
J. Wang, A. Li, S. Xu, B. Li, C. Song, Y. Geng, N. Chu, J. He, W. Xu, J. Mater. Chem. C 2018, 6, 8958
CrossRef Google scholar
[27]
Y. Zhang, H. Wu, Y. Wang, L. Sun, S. Li, Y. Ren, Y. Sun, F. Yang, X. Zhang, W. Hu, J. Mater. Chem. C 2022, 10, 2562
CrossRef Google scholar
[28]
H. Ye, G. Liu, S. Liu, D. Casanova, X. Ye, X. Tao, Q. Zhang, Q. Xiong, Angew. Chem. Int. Ed. 2018, 57, 1928.
CrossRef Google scholar
[29]
Y. Huang, J. Xing, Q. Gong, L. Chen, G. Liu, C. Yao, Z. Wang, H. Zhang, Z. Chen, Q. Zhang, Nat. Commun. 2019, 10, 169.
[30]
J. Jin, G. Long, Y. Gao, J. Zhang, C. Ou, C. Zhu, H. Xu, J. Zhao, M. Zhang, W. Huang, ACS Appl. Mater. Inter. 2019, 11, 1109.
CrossRef Google scholar
[31]
B. Wu, M. Zhuo, S. Chen, Y. Su, Y. Yu, J. Fan, Z. Wang, X. Wang, Adv. Opt. Mater. 11, 2023, 2202895.
[32]
a) Y. Ma, H. Yin, J. Yang, H. Lin, S. Chen, J. Zhou, S. Zhuo, X. Wang, Adv. Opt. Mater. 2023, 11, 2201000. b) G. Jiang, J. Yu, J. Wang, B. Z. Tang, Aggregate 2022, 3, e285.
CrossRef Google scholar
[33]
X. Huang, X. Liu, K. Ding, S. R. Forrest, Mater. Horizons 2020, 7, 244.
CrossRef Google scholar
[34]
R. Natarajan, G. Magro, L. N. Bridgland, A. Sirikulkajorn, S. Narayanan, L. E. Ryan, M. F. Haddow, A. G. Orpen, J. P. H. Charmant, A. J. Hudson, A. P. Davis, Angew. Chem. Int. Ed. 2011, 50, 11386.
CrossRef Google scholar
[35]
K. Sada, K. Inoue, T. Tanaka, A. Epergyes, A. Tanaka, N. Tohnai, A. Matsumoto, M. Miyata, Angew. Chem. Int. Ed. 2005, 44, 7059.
CrossRef Google scholar
[36]
M. Schwarze, W. Tress, B. Beyer, F. Gao, R. Scholz, C. Poelking, K. Ortstein, A. A. Günther, D. Kasemann, D. Andrienko, K. Leo, Science 2016, 352, 1446.
CrossRef Google scholar
[37]
J. Dou, Z. Yu, J. Zhang, Y. Zheng, Z. Yao, Z. Tu, X. Wang, S. Huang, C. Liu, J. Sun, Y. Yi, X. Cao, Y. Gao, J. Wang, J. Pei, J. Am. Chem. Soc. 2019, 141, 6561.
CrossRef Google scholar
[38]
J. Zhang, W. Liu, G. Zhou, Y. Yi, S. Xu, F. Liu, H. Zhu, X. Zhu, Adv. Energy Mater. 2020, 10, 1903298.
[39]
Z. Bi, Q. Zhu, X. Xu, H. B. Naveed, X. Sui, J. Xin, L. Zhang, T. Li, K. Zhou, X. Liu, X. Zhan, W. Ma, Adv. Funct. Mater. 2019, 29, 1806804.
[40]
A. D. de Zerio, C. Müller, Adv. Energy Mater. 2018, 8, 1702741.
[41]
F. Liu, L. Zhou, W. Liu, Z. Zhou, Q. Yue, W. Zheng, R. Sun, W. Liu, S. Xu, H. Fan, L. Feng, Y. Yi, W. Zhang, X. Zhu, Adv. Mater. 2021, 33, 2100830.
[42]
N. S. Gobalasingham, S. Noh, J. B. Howard, B. C. Thompson, ACS Appl. Mater. Inter. 2016, 8, 27931.
CrossRef Google scholar
[43]
J. Gao, N. Yu, Z. Chen, Y. Wei, C. Li, T. Liu, X. Gu, J. Zhang, Z. Wei, Z. Tang, X. Hao, F. Zhang, X. Zhang, H. Huang, Adv. Sci. 2022, 9, 2203606.
[44]
J. Wan, Z. Chen, L. Zeng, X. Liao, Q. He, S. Liu, P. Zhu, H. Zhu, Y. Chen, J. Energy Chem. 2022, 65, 133.
CrossRef Google scholar
[45]
Y. Chen, P. Ye, X. Jia, W. Gu, X. Xu, X. Wu, J. Wu, F. Liu, Z. Zhu, H. Huang, J. Mater. Chem. A 2017, 5, 19697.
CrossRef Google scholar
[46]
H. Zhang, Y. Lei, H. Wang, W. Wong, J. Mater. Chem. C 2020, 8, 2669.
CrossRef Google scholar
[47]
Q. Lv, X. Wang, W. Yang, K. Wang, C. Xu, M. Zheng, L. Liao, CCS Chem. 2022, 5, 423.
CrossRef Google scholar
[48]
Q. Lv, X. Wang, Y. Yu, M. Zhuo, M. Zheng, L. Liao, Nat. Commun. 2022, 13, 3099.
[49]
Y. Lei, Y. Sun, Y. Zhang, H. Zhang, H. Zhang, Z. Meng, W. Wong, J. Yao, H. Fu, Nat. Commun. 2018, 9, 4358.
[50]
D. Okada, S. Azzini, H. Nishioka, A. Ichimura, H. Tsuji, E. Nakamura, F. Sasaki, C. Genet, T. W. Ebbesen, Y. Yamamoto, Nano Lett. 2018, 18, 4396.
CrossRef Google scholar
[51]
J. Ravi, A. V. Kumar, D. P. Karothu, M. Annadhasan, P. Naumov, R. Chandrasekar, Adv. Funct. Mater. 2021, 31, 2105415.
[52]
A. V. Kumar, M. Godumala, J. Ravi, R. Chandrasekar, Angew. Chem. Int. Ed. 2022, 61, e202212382.
[53]
Y. Su, Z. Yao, B. Wu, Y. Zhao, J. Han, J. Sun, M. Zhuo, J. Fan, Z. Wang, J. Pei, L. Liao, X. Wang, Matter 2022, 5, 1520.
CrossRef Google scholar
[54]
Z. Xu, D. Hean, J. Yuan, M. O. Wolf, Chem. Sci. 2022, 13, 6882.
CrossRef Google scholar
[55]
X. Han, Y. Lei, Q. Liao, H. Fu, Angew. Chem. Int. Ed. 2021, 60, 3037.
CrossRef Google scholar
[56]
P. Zhao, L. Zhang, Z. Meng, Y. Lei, Adv. Funct. Mater. 2022, 32, 2205092.
[57]
T. Hasell, S. Y. Chong, M. Schmidtmann, D. J. Adams, A. I. Cooper, Angew. Chem. Int. Ed. 2012, 51, 7154.
CrossRef Google scholar
[58]
T. Lu, Q. Chen, J. Comput. Chem. 2022, 43, 539.
CrossRef Google scholar
[59]
H. Hu, F. Meier, D. Zhao, Y. Abe, Y. Gao, B. Chen, T. Salim, E. E. M. Chia, X. Qiao, C. Deibel, Y. M. Lam, Adv. Mater. 2018, 30, 1707621.
[60]
S. Yang, D. Wu, W. Gong, Q. Huang, H. Zhen, Q. Ling, Z. Lin, Chem. Sci. 2018, 9, 8975.
CrossRef Google scholar
[61]
F. Liu, T. Zhang, D. Mondal, S. Teng, Y. Zhang, K. Huang, D. Wang, W. Yang, P. Mahadevan, Y. S. Zhao, R. Xie, N. Pradhan, Angew. Chem. Int. Ed. 2021, 60, 13548.
CrossRef Google scholar
[62]
L. Lian, T. Zhang, H. Ding, P. Zhang, X. Zhang, Y. Zhao, J. Gao, D. Zhang, Y. S. Zhao, J. Zhang, ACS Mater. Lett. 2022, 4, 1446.
CrossRef Google scholar
[63]
H. Wang, S. I. Vagin, S. Lane, W. Lin, V. Shyta, W. R. Heinz, C. Van Dyck, A. J. Bergren, K. Gardner, B. Rieger, A. Meldrum, Chem. Mater. 2019, 31, 5816.
CrossRef Google scholar
[64]
B. Zhou, D. Yan, Adv. Funct. Mater. 2019, 29, 1807599.
[65]
T. Matsuo, K. Ikeda, S. Hayashi, Aggregate 2023, e378.
CrossRef Google scholar
[66]
X. Tang, L. Cui, H. Li, A. J. Gillett, F. Auras, Y. Qu, C. Zhong, S. T. E. Jones, Z. Jiang, R. H. Friend, L. Liao, Nat. Mater. 2020, 19, 1332.
CrossRef Google scholar
[67]
a) S. Wu, B. Zhou, D. Yan, Adv. Opt. Mater. 2021, 9, 2001768. b) M. Annadhasan, S. Basak, N. Chandrasekhar, R. Chandrasekar, Adv. Opt. Mater. 2020, 8, 2000959.
CrossRef Google scholar
[68]
K. Kokubun, J. Lightwave Technol. 2018, 36, 6.
CrossRef Google scholar
[69]
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, et al., Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
[70]
a) C. Adamo, V. Barone, J. Chem. Phy. 1999, 110, 6158. b) S. Emamian, T. Lu, H. Kruse, H. Emamian, J. Comput. Chem. 2019, 40, 2868.
CrossRef Google scholar
[71]
K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272.
CrossRef Google scholar
[72]
M. Zhuo, Y. Su, Y. Qu, S. Chen, G. He, Y. Yuan, H. Liu, Y. Tao, X. Wang, L. Liao, Adv. Mater. 2021, 33, 2102719.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/