AIEgen configuration transition and aggregation enable dual prompt emission for single-component nondoped white OLEDs

Jiasen Zhang, Qiang Wei, Wei Li, Hao Chen, Xiangyu Zhu, Yongqi Bai, Nannan Fei, Liang Cao, Zujin Zhao, Anjun Qin, Ben Zhong Tang, Ziyi Ge

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 410. DOI: 10.1002/agt2.410
RESEARCH ARTICLE

AIEgen configuration transition and aggregation enable dual prompt emission for single-component nondoped white OLEDs

Author information +
History +

Abstract

The dual emission (DE) feature in materials holds great potential to revolutionize the development of one-component system white organic light-emitting diodes (WOLEDs). However, the reported DE materials remain scarce owing to the formidable challenge of breaking Kasha’s rule and managing the intricate energy/charge transfer processes. Herein, we have introduced a groundbreaking DE AIEgen, 2CzAn-TPE, which possesses a simple structure and undergoes Z-to-E isomerization and exhibits yellow and red fluorescence powders for pre- and post-sublimation, respectively. With relatively lower potential energy, Z-conformation ((Z)-1,2-diphenyl-1,2-bis(4-(10-(9-phenyl-9H-carbazol-3-yl)anthracen-9-yl)phenyl)ethene) of 2CzAn-TPE can be readily transformed into E-conformation ((E)-1,2-diphenyl-1,2-bis(4-(10-(9-phenyl-9Hcarbazol- 3-yl)anthracen-9-yl)phenyl)ethene) via vacuum sublimation. The utilization of X-ray diffraction and grazing-incidence-wide-angle X-ray scattering techniques confirms the structural transformation, while the crystallographic analysis reveals the establishment of numerous intermolecular CH...π interactions between the tetraphenylethene (TPE) moiety and both the anthracene and carbazole units. This allows a densely packed molecular arrangement, thereby offering propitious conditions for excimer generation in the E-conformation aggregated state. By utilizing the sublimated 2CzAn-TPE as an emitter, a nondoped one-component WOLED was prepared, exhibiting an exceptionally high external quantum efficiency (EQE) of 5.0%, which represents one of the highest performances among all one-componentWOLEDs. This research introduces a novel, simple, and efficient approach to realize highly efficient one-molecule WOLEDs.

Keywords

aggregation-induced emission / dual emission / isomerization / white OLED

Cite this article

Download citation ▾
Jiasen Zhang, Qiang Wei, Wei Li, Hao Chen, Xiangyu Zhu, Yongqi Bai, Nannan Fei, Liang Cao, Zujin Zhao, Anjun Qin, Ben Zhong Tang, Ziyi Ge. AIEgen configuration transition and aggregation enable dual prompt emission for single-component nondoped white OLEDs. Aggregate, 2024, 5(1): 410 https://doi.org/10.1002/agt2.410

References

[1]
Q. Wei, N. Fei, A. Islam, T. Lei, L. Hong, R. Peng, X. Fan, L. Chen, P. Gao, Z. Ge, Adv. Opt. Mater.2018, 6, 1800512.
[2]
W. Qiu, D. Liu, Z. Chen, Y. Gan, S. Xiao, X. Peng, D. Zhang, X. Cai, M. Li, W. Xie, G. Sun, Y. Jiao, Q. Gu, D. Ma, S. Su, Matter2023, 6, 1231.
CrossRef Google scholar
[3]
J.-X. Chen, K. Wang, Y.-F. Xiao, C. Cao, J.-H. Tan, H. Wang, X.-C. Fan, J. Yu, F.-X. Geng, X.-H. Zhang, C.-S. Lee, Adv. Funct. Mater.2021, 3, 2101647.
[4]
M. Gioti, V. Foris, V. Kyriazopoulos, E. Mekeridis, A. Laskarakis, S. Logothetidis, Mater. Today Proc.2021, 37, A32.
CrossRef Google scholar
[5]
A. Takiguchi, S. Kang, N. Fukui, D. Kim, H. Shinokubo, Angew. Chem. Int. Ed.2021, 60, 2915.
CrossRef Google scholar
[6]
J. Zhao, X. Chen, Z. Yang, Y. Zhang, Z. Chi, SID Symp. Dig. Tech. Pap.2021, 52, 353.
CrossRef Google scholar
[7]
Z. He, W. Zhao, J. W. Y. Lam, Q. Peng, H. Ma, G. Liang, Z. Shuai, B. Z. Tang, Nat. Commun.2017, 8, 416.
[8]
R. Gui, H. Jin, X. Bu, Y. Fu, Z. Wang, Q. Liu, Coord. Chem. Rev.2019, 383, 82.
CrossRef Google scholar
[9]
Z. Gao, K. Wang, Y. Yan, J. Yao, Y. S. Zhao, Natl. Sci. Rev.2020, 8, 2
[10]
S. M. A Fateminia, Z. Mao, S. Xu, Z. Yang, Z. Chi, B. Liu, Angew. Chem. Int. Ed.2017, 56, 12160.
CrossRef Google scholar
[11]
H. L. Lee, H. J. Jang, J. Y. Lee, J. Mater. Chem. C2020, 8, 10302.
CrossRef Google scholar
[12]
S. K. Behera, S. Y. Park, J. Gierschner, Angew. Chem. Int. Ed.2021, 60, 22624.
CrossRef Google scholar
[13]
C. Li, J. Liang, B. Liang, Z. Li, Z. Cheng, G. Yang, Y. Wang, Adv. Opt. Mater.2019, 7, 180166.
[14]
Y. Wen, T. Sheng, X. Zhu, C. Zhuo, S. Su, H. Li, S. Hu, Q. L. Zhu, X. Wu, Adv. Mater.2017, 29, 1700778.
[15]
M. Chen, Y. Zhao, L. Yan, S. Yang, Y. Zhu, I. Murtaza, G. He, H. Meng, W. Huang, Angew. Chem. Int. Ed.2017, 56, 722.
[16]
N. A. Kukhta, M. R. Bryce, Mater. Horiz.2021, 8, 33.
CrossRef Google scholar
[17]
B. Chen, B. Liu, J. Zeng, H. Nie, Y. Xiong, J. Zou, H. Ning, Z. Wang, Z. Zhao, B. Z. Tang, Adv. Funct. Mater.2018, 28, 1803369.
[18]
D. Zhang, X. Song, H. Li, M. Cai, Z. Bin, T. Huang, L. Duan, Adv. Mater.2018, 30, 1707590.
[19]
J. Yang, M. Fang, Z. Li, Aggregate2020, 1, 6.
CrossRef Google scholar
[20]
R. Hu, A. Qin, B. Z. Tang, Prog. Polym. Sci.2020, 100, 101176.
CrossRef Google scholar
[21]
H. Wang, E. Zhao, J. W. Y. Lam, B. Z. Tang, Mater. Today2015, 18, 365.
CrossRef Google scholar
[22]
P. Han, E. Xia, A. Qin, B. Z. Tang, Coord. Chem. Rev.2022, 473, 214843.
CrossRef Google scholar
[23]
Y. F. Wang, M. Li, J. M. Teng, H. Y. Zhou, C. F. Chen, Adv. Funct. Mater.2021, 31, 2106418.
[24]
G. Chen, J. Wang, W. C. Chen, Y. Gong, N. Zhuang, H. Liang, L. Xing, Y. Liu, S. Ji, H. L. Zhang, Z. Zhao, Y. Huo, B. Z. Tang, Adv. Funct. Mater.2023, 33, 2211893.
[25]
C. Lin, P. Han, F. Qu, S. Xiao, Y. Li, D. Xie, X. Qiao, D. Yang, Y. Dai, Q. Sun, A. Qin, B. Z. Tang, D. Ma, Mater. Horiz.2022, 9, 2376.
CrossRef Google scholar
[26]
J. Li, J. Wang, H. Li, N. Song, D. Wang, B. Z. Tang, Chem. Soc. Rev.2020, 49, 1144.
CrossRef Google scholar
[27]
Q. Wei, P. Imbrasas, E. Caldera-Cruz, L. Cao, N. Fei, H. Thomas, R. Scholz, S. Lenk, B. Voit, S. Reineke, Z. Ge, The J. Phy. Chem. A2021, 125, 1345.
CrossRef Google scholar
[28]
J. Zhang, Q. Wei, N. Fei, M. Zhao, L. Xie, L. Cao, X. Zhang, G. Xie, T. Wang, Z. Ge, ACS Appl. Mater. Interfaces2021, 13, 12305.
CrossRef Google scholar
[29]
Q. Wei, P. Kleine, Y. Karpov, X. Qiu, H. Komber, K. Sahre, A. Kiriy, R. Lygaitis, S. Lenk, S. Reineke, B. Voit, Adv. Funct. Mater.2017, 27, 1605051.
[30]
W. Li, X. Cai, B. Li, L. Gan, Y. He, K. Liu, dr D. Chen, Y.-C. Wu, S.-J. Su, Angew. Chem. Int. Ed.2016, 55, 6192.
[31]
J. Wang, J. Mei, R. Hu, J. Z. Sun, A. Qin, B. Z. Tang, J. Am. Chem. Soc.2012, 134, 9956.
CrossRef Google scholar
[32]
M. Zhang, Y. Yao, P. J. Stang, W. Zhao, Angew. Chem. Int. Ed.2020, 59, 20090;
CrossRef Google scholar
[33]
C.-J. Zhang, G. Feng, S. Xu, Z. Zhu, X. Lu, J. Wu, B. Liu, Angew. Chem. Int. Ed.2016, 55, 6192.
CrossRef Google scholar
[34]
J. Zhang, T. Lu, Phys. Chem. Chem. Phys.2021, 23, 20323.
CrossRef Google scholar
[35]
S. Manzetti, T. Lu, J. Phys. Org. Chem.2013, 26, 473.
CrossRef Google scholar
[36]
J. Zhang, W. Li, L. Lyu, Q. Wei, Y. Meng, D. Li, Z. Wang, M. Luo, S. Du, X. Xu, X. Zhang, G. Xie, Z. Ge, Mater. Horiz.2023. https://doi.org/10.1039/D3MH00676J
[37]
Y.-H. Chen, K.-C. Tang, Y.-T. Chen, J.-Y. Shen, Y.-S. Wu, S.-H. Liu, C.-S. Lee, C.-H. Chen, T.-Y. Lai, S.-H. Tung, R.-J. Jeng, W.-Y. Hung, M. Jiao, C.-C. Wu, P.-T. Chou, Chem. Sci.2016, 7, 3556.
CrossRef Google scholar
[38]
J. Zhang, Y. Bai, Q. Wei, L. Cao, T. Wang, Z. Ge, J. Mater. Chem. C2020, 8, 11771.
CrossRef Google scholar
[39]
F. Zhao, D. Ma, Mater. Chem. Front.2017, 1, 1933.
CrossRef Google scholar
[40]
F. Zhao, D. Ma, Mater. Chem. Front.2017, 1, 1933.
CrossRef Google scholar
[41]
S.-J. Zou, X.-Y. Zeng, Y.-Q. Li, J.-X. Tang, Laser. Photonics Rev.2021, 15, 2000474.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/