Triazine-based multicomponent metallacages with tunable structures for SO2 selective capture and conversion

Ruoqian Zhang , Dingyue Hu , Yu Fu , Qian Feng , Chaoqun Mu , Kai Gao , Heping Ma , Ming Liu , Mingming Zhang

Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 408

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) :408 DOI: 10.1002/agt2.408
RESEARCH ARTICLE

Triazine-based multicomponent metallacages with tunable structures for SO2 selective capture and conversion

Author information +
History +
PDF

Abstract

The design of novel materials for sulfur dioxide (SO2) capture and conversion with considerable efficiency under mild conditions is of great significance for human health and environmental protection yet highly challenging. Herein, we report a series of triazine-based multicomponent metallacages via coordination-driven self-assembly of 2,4,6-tri(4-pyridyl)-1,3,5-triazine, cis-Pt(PEt3)2(OTf)2 and different tetracarboxylic ligands. As the increase of the length of the tetracarboxylates, the structures of the metallacages change from pyramids to extended octahedrons. Owing to their N-rich structure, these metallacages are further used for selective SO2 capture, showing good adsorption capacity and remarkable SO2/CO2 selectivity in ambient conditions, suggesting their potential applications toward real flue gas desulfurization. The metallacages are further employed for the conversion of SO2 into value-added compounds, showing exceptional efficiency even dilute SO2 is used as the reactant. This study represents a type of structure-tunable triazinebased metallacages for SO2 capture and conversion, which will pave the way on the applications of metal-organic complexes for gas adsorption.

Keywords

multicomponent metallacages / self-assembly / SO 2 adsorption / SO 2 conversion / tunable structures

Cite this article

Download citation ▾
Ruoqian Zhang, Dingyue Hu, Yu Fu, Qian Feng, Chaoqun Mu, Kai Gao, Heping Ma, Ming Liu, Mingming Zhang. Triazine-based multicomponent metallacages with tunable structures for SO2 selective capture and conversion. Aggregate, 2024, 5(1): 408 DOI:10.1002/agt2.408

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

C. K. Baker, M. H. Unsworth, P. Greenwood, Nature 1982, 299, 149.

[2]

M. R. Taylor, E. S. Rubin, D. A. Hounshell, Environ. Sci. Technol. 2003, 37, 4527.

[3]

M. M. M. F. Jion, J. N. Jannat, M. Y. Mia, M. A. Ali, M. S. Islam, S. M. Ibrahim, S. C. Pal, A. Islam, A. Sarker, G. Malafaia, M. Bilal, A. R. M. T. Islam, Sci. Total. Environ. 2023, 876, 162851.

[4]

D. Zheng, J. Yu, J. Wu, Angew. Chem. Int. Ed. 2016, 55, 11925.

[5]

Z. Li, L. Jiao, Y. Sun, Z. He, Z. Wei, W. Liao, Angew. Chem. Int. Ed. 2020, 59, 7266.

[6]

Y. Cheng, Y. Ying, S. Japip, S. Jiang, T. Chung, S. Zhang, D. Zhao, Adv. Mater. 2018, 30, 1802401.

[7]

C. Gu, N. Hosono, J. Zheng, Y. Sato, S. Kusaka, S. Sakaki, S. Kitagawa, Science 2019, 363, 387.

[8]

W. Sun, Nat. Nanotechnol. 2021, 16, 1054.

[9]

C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi, Nat. Chem. 2010, 2, 235.

[10]

Y. Ying, S. Peh, H. Yang, Z. Yang, D. Zhao, Adv. Mater. 2022, 34, 2104946.

[11]

T. Hasell, M. Miklitz, A. Stephenson, M. A. Little, S. Y. Chong, R. Clowes, L. Chen, D. Holden, G. A. Tribello, K. E. Jelfs, A. I. Cooper, J. Am. Chem. Soc. 2016, 138, 1653.

[12]

C. A. Rowland, G. R. Lorzing, A. J. Gosselin, B. A. Trump, G. P. A. Yap, C. M. Brown, E. D. Bloch, J. Am. Chem. Soc. 2018, 140, 11153.

[13]

A. Schoedel, M. Li, D. Li, M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2016, 116, 12466.

[14]

A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, O. K. Farha, Nat. Rev. Mater. 2016, 1, 15018.

[15]

K. L. Kollmannsberger, L. Kronthaler, J. R. Jinschek, R. A. Fischer, Chem. Soc. Rev. 2022, 51, 9933.

[16]

X. Han, S. Yang, M. Schröder, Nat. Rev. Chem. 2019, 3, 108.

[17]

T. Islamoglu, Z. Chen, M. C. Wasson, C. T. Buru, K. O. Kirlikovali, U. Afrin, M. R. Mian, O. K. Farha, Chem. Rev. 2020, 120, 8130.

[18]

F. Chen, D. Lai, L. Guo, J. Wang, P. Zhang, K. Wu, Z. Zhang, Q. Yang, Y. Yang, B. Chen, Q. Ren, Z. Bao, J. Am. Chem. Soc. 2021, 143, 9040.

[19]

W. Li, J. Li, T. D. Duong, S. A. Sapchenko, X. Han, J. D. Humby, G. F. S. Whitehead, I. J. Victórica-Yrezábal, I. Silva, P. Manuel, M. D. Frogley, G. Cinque, M. Schröder, S. Yang, J. Am. Chem. Soc. 2022, 144, 13196.

[20]

A. J. Rieth, A. M. Wright, M. Dincă, Nat. Rev. Mater. 2019, 4, 708.

[21]

M. R. Tchalala, P. M. Bhatt, K. N. Chappanda, S. R. Tavares, K. Adil, Y. Belmabkhout, A. Shkurenko, A. Cadiau, N. Heymans, G. De Weireld, G. Maurin, K. N. Salama, M. Eddaoudi, Nat. Commun. 2019, 10, 1328.

[22]

P. Brandt, S. Xing, J. Liang, G. Kurt, A. Nuhnen, O. Weingart, C. Janiak, ACS Appl. Mater. Inter. 2021, 13, 29137.

[23]

Y. Zhang, P. Zhang, W. Yu, J. Zhang, J. Huang, J. Wang, M. Xu, Q. Deng, Z. Zeng, S. Deng, ACS Appl. Mater. Inter. 2019, 11, 10680.

[24]

S. Xing, J. Liang, P. Brandt, F. Schäfer, A. Nuhnen, T. Heinen, I. Boldog, J. Möllmer, M. Lange, O. Weingart, C. Janiak, Angew. Chem. Int. Ed. 2021, 60, 17998.

[25]

S. Yang, J. Sun, A. J Ramirez-Cuesta, S. K. Callear, W. I. F. David, D. P. Anderson, R. Newby, A. J. Blake, J. E. Parker, C. C. Tang, M. Schröder, Nat. Chem. 2012, 4, 887.

[26]

Y. Inokuma, M. Kawano, M. Fujita, Nat. Chem. 2011, 3, 349.

[27]

G. H. Clever, P. Punt, Acc. Chem. Res. 2017, 50, 2233.

[28]

S. Chakraborty, G. R. Newkome, Chem. Soc. Rev. 2018, 47, 3991.

[29]

Y. Sun, C. Chen, J. Liu, P. J. Stang, Chem. Soc. Rev. 2020, 49, 3889.

[30]

Y. Sun, P. J. Stang, Aggregate 2021, 2, e94.

[31]

C. T. McTernan, J. A. Davies, J. R. Nitschke, Chem. Rev. 2022, 122, 10393.

[32]

L. S. Lisboa, J. A. Findlay, L. J. Wright, C. G. Hartinger, J. D. Crowley, Angew. Chem. Int. Ed. 2020, 59, 11101.

[33]

P. Howlader, E. Zangrando, P. S. Mukherjee, J. Am. Chem. Soc. 2020, 142, 9070.

[34]

H. Sepehrpour, W. Fu, Y. Sun, P. J. Stang, J. Am. Chem. Soc. 2019, 141, 14005.

[35]

C. M. Hong, R. G. Bergman, K. N. Raymond, F. D. Toste, Acc. Chem. Res. 2018, 51, 2447.

[36]

R. Saha, B. Mondal, P. S. Mukherjee, Chem. Rev. 2022, 122, 12244.

[37]

A. J. Gosselin, C. A. Rowland, E. D. Bloch, Chem. Rev. 2020, 120, 8987.

[38]

E. Martínez-Ahumada, D. He, V. Berryman, A. López-Olvera, M. Hernandez, V. Jancik, V. Martis, M. A. Vera, E. Lima, D. J. Parker, A. I. Cooper, I. A. Ibarra, M. Liu, Angew. Chem. Int. Ed. 2021, 60, 17556.

[39]

N. K. Gupta, A. López-Olvera, E. González-Zamora, E. Martínez-Ahumada, I. A. Ibarra, Chempluschem 2022, 87, e202200006.

[40]

S. J. Tan, D. D. Dob, J. W. Chew, Phys. Chem. Chem. Phys. 2020, 22, 21463.

[41]

D. D. Miller, S. S. C. Chuang, J. Phys. Chem. C 2015, 119, 6713.

[42]

S. J Valencia-Loza, A. López-Olvera, E. Martínez-Ahumada, D. Martínez-Otero, I. A. Ibarra, V. Jancik, E. G. Percástegui, ACS Appl. Mater. Inter. 2021, 13, 18658.

[43]

E. Martínez-Ahumada, A. López-Olvera, P. Carmona-Monroy, H. Díaz-Salazar, M. H. Garduño-Castro, J. L. Obeso, C. Leyva, A. Martínez, M. Hernández-Rodríguez, D. Solis-Ibarra, I. A. Ibarra, Dalton Trans. 2022, 51, 18368.

[44]

M. Fujita, D. Oguro, M. Miyazawa, H. Oka, K. Yamaguchi, K. Ogura, Nature 1995, 378, 469.

[45]

L. Cai, S. Li, D. Yan, L. Zhou, F. Guo, Q. Sun, J. Am. Chem. Soc. 2018, 140, 4869.

[46]

S. Li, L. Cai, M. Hong, Q. Chen, Q. Sun, Angew. Chem. Int. Ed. 2022, 61, e202204732.

[47]

M. Yoshizawa, M. Tamura, M. Fujita, Science 2006, 312, 251.

[48]

Y. Hou, Z. Zhang, S. Lu, J. Yuan, Q. Zhu, W. Chen, S. Ling, X. Li, Y. Zheng, K. Zhu, M. Zhang, J. Am. Chem. Soc. 2020, 142, 18763.

[49]

C. Mu, Z. Zhang, Y. Hou, H. Liu, L. Ma, X. Li, S. Ling, G. He, M. Zhang, Angew. Chem. Int. Ed. 2021, 60, 12293.

[50]

Y. Zheng, Z. Zhao, M. Wang, K. Ghosh, J. B. Pollock, T. R. Cook, P. J. Stang, J. Am. Chem. Soc. 2010, 132, 16873.

[51]

G. Zhang, M. Mastalerz, Chem. Soc. Rev. 2014, 43, 1934.

[52]

J. Koo, I. Kim, Y. Kim, D. Cho, I. Hwang, R. D. Mukhopadhyay, H. Song, Y. H. Ko, A. Dhamija, H. Lee, W. Hwang, S. Kim, M. Baik, K. Kim, Chem 2020, 6, 3374.

[53]

K. Chi, C. Addicott, M. Moon, H. J. Lee, S. C. Yoon, P. J. Stang, J. Org. Chem. 2006, 71, 6662.

[54]

G. Zhang, B. Hua, A. Dey, M. Ghosh, B. A. Moosa, N. M. Khashab, Acc. Chem. Res. 2021, 54, 155.

[55]

J. S. Wright, A. J. Metherell, W. M. Cullen, J. R. Piper, R. Dawson, M. D. Ward, Chem. Commun. 2017, 53, 4398.

[56]

C. Mellot-Draznieks, C. Serre, S. Surblé, N. Audebrand, G. Férey, J. Am. Chem. Soc. 2005, 127, 16273.

[57]

X. Cui, Q. Yang, L. Yang, R. Krishna, Z. Zhang, Z. Bao, H. Wu, Q. Ren, W. Zhou, B. Chen, H. Xing, Adv. Mater. 2017, 29, 1606929.

[58]

S. Chen, Y. Wu, W. Zhang, S. Wang, T. Yan, S. He, B. Yang, H. Ma, Chem. Eng. J. 2022, 429, 132480.

[59]

H. Woolven, C. González-Rodríguez, I. Marco, A. Thompson, M. Willis, Org. Lett. 2011, 13, 4876.

RIGHTS & PERMISSIONS

2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

204

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/