Triazine-based multicomponent metallacages with tunable structures for SO2 selective capture and conversion

Ruoqian Zhang, Dingyue Hu, Yu Fu, Qian Feng, Chaoqun Mu, Kai Gao, Heping Ma, Ming Liu, Mingming Zhang

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 408. DOI: 10.1002/agt2.408
RESEARCH ARTICLE

Triazine-based multicomponent metallacages with tunable structures for SO2 selective capture and conversion

Author information +
History +

Abstract

The design of novel materials for sulfur dioxide (SO2) capture and conversion with considerable efficiency under mild conditions is of great significance for human health and environmental protection yet highly challenging. Herein, we report a series of triazine-based multicomponent metallacages via coordination-driven self-assembly of 2,4,6-tri(4-pyridyl)-1,3,5-triazine, cis-Pt(PEt3)2(OTf)2 and different tetracarboxylic ligands. As the increase of the length of the tetracarboxylates, the structures of the metallacages change from pyramids to extended octahedrons. Owing to their N-rich structure, these metallacages are further used for selective SO2 capture, showing good adsorption capacity and remarkable SO2/CO2 selectivity in ambient conditions, suggesting their potential applications toward real flue gas desulfurization. The metallacages are further employed for the conversion of SO2 into value-added compounds, showing exceptional efficiency even dilute SO2 is used as the reactant. This study represents a type of structure-tunable triazinebased metallacages for SO2 capture and conversion, which will pave the way on the applications of metal-organic complexes for gas adsorption.

Keywords

multicomponent metallacages / self-assembly / SO2 adsorption / SO2 conversion / tunable structures

Cite this article

Download citation ▾
Ruoqian Zhang, Dingyue Hu, Yu Fu, Qian Feng, Chaoqun Mu, Kai Gao, Heping Ma, Ming Liu, Mingming Zhang. Triazine-based multicomponent metallacages with tunable structures for SO2 selective capture and conversion. Aggregate, 2024, 5(1): 408 https://doi.org/10.1002/agt2.408

References

[1]
C. K. Baker, M. H. Unsworth, P. Greenwood, Nature 1982, 299, 149.
CrossRef Google scholar
[2]
M. R. Taylor, E. S. Rubin, D. A. Hounshell, Environ. Sci. Technol. 2003, 37, 4527.
CrossRef Google scholar
[3]
M. M. M. F. Jion, J. N. Jannat, M. Y. Mia, M. A. Ali, M. S. Islam, S. M. Ibrahim, S. C. Pal, A. Islam, A. Sarker, G. Malafaia, M. Bilal, A. R. M. T. Islam, Sci. Total. Environ. 2023, 876, 162851.
CrossRef Google scholar
[4]
D. Zheng, J. Yu, J. Wu, Angew. Chem. Int. Ed. 2016, 55, 11925.
CrossRef Google scholar
[5]
Z. Li, L. Jiao, Y. Sun, Z. He, Z. Wei, W. Liao, Angew. Chem. Int. Ed. 2020, 59, 7266.
CrossRef Google scholar
[6]
Y. Cheng, Y. Ying, S. Japip, S. Jiang, T. Chung, S. Zhang, D. Zhao, Adv. Mater. 2018, 30, 1802401.
[7]
C. Gu, N. Hosono, J. Zheng, Y. Sato, S. Kusaka, S. Sakaki, S. Kitagawa, Science 2019, 363, 387.
CrossRef Google scholar
[8]
W. Sun, Nat. Nanotechnol. 2021, 16, 1054.
CrossRef Google scholar
[9]
C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt, O. M. Yaghi, Nat. Chem. 2010, 2, 235.
CrossRef Google scholar
[10]
Y. Ying, S. Peh, H. Yang, Z. Yang, D. Zhao, Adv. Mater. 2022, 34, 2104946.
[11]
T. Hasell, M. Miklitz, A. Stephenson, M. A. Little, S. Y. Chong, R. Clowes, L. Chen, D. Holden, G. A. Tribello, K. E. Jelfs, A. I. Cooper, J. Am. Chem. Soc. 2016, 138, 1653.
CrossRef Google scholar
[12]
C. A. Rowland, G. R. Lorzing, A. J. Gosselin, B. A. Trump, G. P. A. Yap, C. M. Brown, E. D. Bloch, J. Am. Chem. Soc. 2018, 140, 11153.
CrossRef Google scholar
[13]
A. Schoedel, M. Li, D. Li, M. O’Keeffe, O. M. Yaghi, Chem. Rev. 2016, 116, 12466.
CrossRef Google scholar
[14]
A. J. Howarth, Y. Liu, P. Li, Z. Li, T. C. Wang, J. T. Hupp, O. K. Farha, Nat. Rev. Mater. 2016, 1, 15018.
[15]
K. L. Kollmannsberger, L. Kronthaler, J. R. Jinschek, R. A. Fischer, Chem. Soc. Rev. 2022, 51, 9933.
CrossRef Google scholar
[16]
X. Han, S. Yang, M. Schröder, Nat. Rev. Chem. 2019, 3, 108.
CrossRef Google scholar
[17]
T. Islamoglu, Z. Chen, M. C. Wasson, C. T. Buru, K. O. Kirlikovali, U. Afrin, M. R. Mian, O. K. Farha, Chem. Rev. 2020, 120, 8130.
CrossRef Google scholar
[18]
F. Chen, D. Lai, L. Guo, J. Wang, P. Zhang, K. Wu, Z. Zhang, Q. Yang, Y. Yang, B. Chen, Q. Ren, Z. Bao, J. Am. Chem. Soc. 2021, 143, 9040.
CrossRef Google scholar
[19]
W. Li, J. Li, T. D. Duong, S. A. Sapchenko, X. Han, J. D. Humby, G. F. S. Whitehead, I. J. Victórica-Yrezábal, I. Silva, P. Manuel, M. D. Frogley, G. Cinque, M. Schröder, S. Yang, J. Am. Chem. Soc. 2022, 144, 13196.
CrossRef Google scholar
[20]
A. J. Rieth, A. M. Wright, M. Dincă, Nat. Rev. Mater. 2019, 4, 708.
CrossRef Google scholar
[21]
M. R. Tchalala, P. M. Bhatt, K. N. Chappanda, S. R. Tavares, K. Adil, Y. Belmabkhout, A. Shkurenko, A. Cadiau, N. Heymans, G. De Weireld, G. Maurin, K. N. Salama, M. Eddaoudi, Nat. Commun. 2019, 10, 1328.
[22]
P. Brandt, S. Xing, J. Liang, G. Kurt, A. Nuhnen, O. Weingart, C. Janiak, ACS Appl. Mater. Inter. 2021, 13, 29137.
CrossRef Google scholar
[23]
Y. Zhang, P. Zhang, W. Yu, J. Zhang, J. Huang, J. Wang, M. Xu, Q. Deng, Z. Zeng, S. Deng, ACS Appl. Mater. Inter. 2019, 11, 10680.
CrossRef Google scholar
[24]
S. Xing, J. Liang, P. Brandt, F. Schäfer, A. Nuhnen, T. Heinen, I. Boldog, J. Möllmer, M. Lange, O. Weingart, C. Janiak, Angew. Chem. Int. Ed. 2021, 60, 17998.
CrossRef Google scholar
[25]
S. Yang, J. Sun, A. J Ramirez-Cuesta, S. K. Callear, W. I. F. David, D. P. Anderson, R. Newby, A. J. Blake, J. E. Parker, C. C. Tang, M. Schröder, Nat. Chem. 2012, 4, 887.
CrossRef Google scholar
[26]
Y. Inokuma, M. Kawano, M. Fujita, Nat. Chem. 2011, 3, 349.
CrossRef Google scholar
[27]
G. H. Clever, P. Punt, Acc. Chem. Res. 2017, 50, 2233.
[28]
S. Chakraborty, G. R. Newkome, Chem. Soc. Rev. 2018, 47, 3991.
CrossRef Google scholar
[29]
Y. Sun, C. Chen, J. Liu, P. J. Stang, Chem. Soc. Rev. 2020, 49, 3889.
CrossRef Google scholar
[30]
Y. Sun, P. J. Stang, Aggregate 2021, 2, e94.
[31]
C. T. McTernan, J. A. Davies, J. R. Nitschke, Chem. Rev. 2022, 122, 10393.
CrossRef Google scholar
[32]
L. S. Lisboa, J. A. Findlay, L. J. Wright, C. G. Hartinger, J. D. Crowley, Angew. Chem. Int. Ed. 2020, 59, 11101.
CrossRef Google scholar
[33]
P. Howlader, E. Zangrando, P. S. Mukherjee, J. Am. Chem. Soc. 2020, 142, 9070.
CrossRef Google scholar
[34]
H. Sepehrpour, W. Fu, Y. Sun, P. J. Stang, J. Am. Chem. Soc. 2019, 141, 14005.
CrossRef Google scholar
[35]
C. M. Hong, R. G. Bergman, K. N. Raymond, F. D. Toste, Acc. Chem. Res. 2018, 51, 2447.
CrossRef Google scholar
[36]
R. Saha, B. Mondal, P. S. Mukherjee, Chem. Rev. 2022, 122, 12244.
CrossRef Google scholar
[37]
A. J. Gosselin, C. A. Rowland, E. D. Bloch, Chem. Rev. 2020, 120, 8987.
CrossRef Google scholar
[38]
E. Martínez-Ahumada, D. He, V. Berryman, A. López-Olvera, M. Hernandez, V. Jancik, V. Martis, M. A. Vera, E. Lima, D. J. Parker, A. I. Cooper, I. A. Ibarra, M. Liu, Angew. Chem. Int. Ed. 2021, 60, 17556.
CrossRef Google scholar
[39]
N. K. Gupta, A. López-Olvera, E. González-Zamora, E. Martínez-Ahumada, I. A. Ibarra, Chempluschem 2022, 87, e202200006.
[40]
S. J. Tan, D. D. Dob, J. W. Chew, Phys. Chem. Chem. Phys. 2020, 22, 21463.
CrossRef Google scholar
[41]
D. D. Miller, S. S. C. Chuang, J. Phys. Chem. C 2015, 119, 6713.
[42]
S. J Valencia-Loza, A. López-Olvera, E. Martínez-Ahumada, D. Martínez-Otero, I. A. Ibarra, V. Jancik, E. G. Percástegui, ACS Appl. Mater. Inter. 2021, 13, 18658.
CrossRef Google scholar
[43]
E. Martínez-Ahumada, A. López-Olvera, P. Carmona-Monroy, H. Díaz-Salazar, M. H. Garduño-Castro, J. L. Obeso, C. Leyva, A. Martínez, M. Hernández-Rodríguez, D. Solis-Ibarra, I. A. Ibarra, Dalton Trans. 2022, 51, 18368.
CrossRef Google scholar
[44]
M. Fujita, D. Oguro, M. Miyazawa, H. Oka, K. Yamaguchi, K. Ogura, Nature 1995, 378, 469.
CrossRef Google scholar
[45]
L. Cai, S. Li, D. Yan, L. Zhou, F. Guo, Q. Sun, J. Am. Chem. Soc. 2018, 140, 4869.
CrossRef Google scholar
[46]
S. Li, L. Cai, M. Hong, Q. Chen, Q. Sun, Angew. Chem. Int. Ed. 2022, 61, e202204732.
[47]
M. Yoshizawa, M. Tamura, M. Fujita, Science 2006, 312, 251.
CrossRef Google scholar
[48]
Y. Hou, Z. Zhang, S. Lu, J. Yuan, Q. Zhu, W. Chen, S. Ling, X. Li, Y. Zheng, K. Zhu, M. Zhang, J. Am. Chem. Soc. 2020, 142, 18763.
CrossRef Google scholar
[49]
C. Mu, Z. Zhang, Y. Hou, H. Liu, L. Ma, X. Li, S. Ling, G. He, M. Zhang, Angew. Chem. Int. Ed. 2021, 60, 12293.
CrossRef Google scholar
[50]
Y. Zheng, Z. Zhao, M. Wang, K. Ghosh, J. B. Pollock, T. R. Cook, P. J. Stang, J. Am. Chem. Soc. 2010, 132, 16873.
CrossRef Google scholar
[51]
G. Zhang, M. Mastalerz, Chem. Soc. Rev. 2014, 43, 1934.
CrossRef Google scholar
[52]
J. Koo, I. Kim, Y. Kim, D. Cho, I. Hwang, R. D. Mukhopadhyay, H. Song, Y. H. Ko, A. Dhamija, H. Lee, W. Hwang, S. Kim, M. Baik, K. Kim, Chem 2020, 6, 3374.
CrossRef Google scholar
[53]
K. Chi, C. Addicott, M. Moon, H. J. Lee, S. C. Yoon, P. J. Stang, J. Org. Chem. 2006, 71, 6662.
CrossRef Google scholar
[54]
G. Zhang, B. Hua, A. Dey, M. Ghosh, B. A. Moosa, N. M. Khashab, Acc. Chem. Res. 2021, 54, 155.
CrossRef Google scholar
[55]
J. S. Wright, A. J. Metherell, W. M. Cullen, J. R. Piper, R. Dawson, M. D. Ward, Chem. Commun. 2017, 53, 4398.
CrossRef Google scholar
[56]
C. Mellot-Draznieks, C. Serre, S. Surblé, N. Audebrand, G. Férey, J. Am. Chem. Soc. 2005, 127, 16273.
CrossRef Google scholar
[57]
X. Cui, Q. Yang, L. Yang, R. Krishna, Z. Zhang, Z. Bao, H. Wu, Q. Ren, W. Zhou, B. Chen, H. Xing, Adv. Mater. 2017, 29, 1606929.
[58]
S. Chen, Y. Wu, W. Zhang, S. Wang, T. Yan, S. He, B. Yang, H. Ma, Chem. Eng. J. 2022, 429, 132480.
CrossRef Google scholar
[59]
H. Woolven, C. González-Rodríguez, I. Marco, A. Thompson, M. Willis, Org. Lett. 2011, 13, 4876.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/