Realizing efficient emission and triple-mode photoluminescence switching in air-stable tin(IV)-based metal halides via antimony doping and rational structural modulation

Xuefei He, Hui Peng, Qilin Wei, Zhijie Zhou, Guolun Zhang, Zhentao Du, Jialong Zhao, Bingsuo Zou

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 407. DOI: 10.1002/agt2.407
RESEARCH ARTICLE

Realizing efficient emission and triple-mode photoluminescence switching in air-stable tin(IV)-based metal halides via antimony doping and rational structural modulation

Author information +
History +

Abstract

Recently, many lead-free metal halides with diverse structures and highly efficient emission have been reported. However, their poor stability and single-mode emission color severely limit their applications. Herein, three homologous Sb3+-doped zero-dimensional (0D) air-stable Sn(IV)-based metal halides with different crystal structures were developed by inserting a single organic ligand into SnCl4 lattice, which brings different optical properties. Under photoexcitation, (C25H22P)SnCl5@Sb·CH4O (Sb3+−1) does not emit light, (C25H22P)2SnCl6@Sb-α (Sb3+−2α) shines bright yellow emission with a photoluminescence quantum yield (PLQY) of 92%, and (C25H22P)2SnCl6@Sb-β (Sb3+−2β) exhibits intense red emission with a PLQY of 78%. The above three compounds show quite different optical properties should be due to their different crystal structures and the lattice distortions. Particularly, Sb3+−1 can be successfully converted into Sb3+−2α under the treatment of C25H22PCl solution, accompanied by a transition from nonemission to efficient yellow emission, serving as a “turn-on” photoluminescence (PL) switching. Parallelly, a reversible structure conversion between Sb3+−2α and Sb3+−2β was witnessed after dichloromethane or volatilization treatment, accompanied by yellow and red emission switching. Thereby, a triple-mode tunable PL switching of off–onI–onII can be constructed in Sb3+-doped Sn(IV)-based compounds. Finally, we demonstrated the as-synthesized compounds in fluorescent anticounterfeiting, information encryption, and optical logic gates.

Keywords

information encryption / Sb3+-doping / Sn(IV)-based metal halides / structural modulation / triple-mode

Cite this article

Download citation ▾
Xuefei He, Hui Peng, Qilin Wei, Zhijie Zhou, Guolun Zhang, Zhentao Du, Jialong Zhao, Bingsuo Zou. Realizing efficient emission and triple-mode photoluminescence switching in air-stable tin(IV)-based metal halides via antimony doping and rational structural modulation. Aggregate, 2024, 5(1): 407 https://doi.org/10.1002/agt2.407

References

[1]
Z. Wang, X. Huang, Chem. Eur. J. 2022, 28, e202200609.
[2]
S. Feng, Y. Ma, S. Wang, S. Gao, Q. Huang, H. Zhen, D. Yan, Q. Ling, Z. Lin, Angew. Chem. Int. Ed. 2022, 134, e202116511.
[3]
B. Zhou, G. Xiao, D. Yan, Adv. Mater. 2021, 33, e2007571.
[4]
B. Zhou, D. Yan, Adv. Funct. Mater. 2023, 33, 2300735.
[5]
J. Liu, Y. Molard, M. E. Prévôt, T. Hegmann, ACS App. Mater. Inter.2022, 14, 29398.
CrossRef Google scholar
[6]
Y. Shi, J. Han, X. Jin, W. Miao, Y. Zhang, P. Duan, Adv. Sci. 2022, 9, 2201565.
[7]
A. Xu, G. Wang, Y. Li, H. Dong, S. Yang, P. He, G. Ding, Small2020, 16, e2004621.
[8]
J. Chen, Y. Guo, B. Chen, W. Zheng, F. Wang, J. Am. Chem. Soc. 2022, 144, 22295.
CrossRef Google scholar
[9]
Y. Sun, Y. Li, W. Zhang, P. Zhu, H. Zhu, W. Qin, G. Wang, Adv. Opt. Mater. 2021, 10, 2101765.
[10]
H. Zhao, T. Lin, S. Shi, W. Bai, T. Xuan, T. Zhou, R.-J. Xie, J. Mater. Chem. C2022, 10, 7552.
CrossRef Google scholar
[11]
M. Li, D. Yang, X. Huang, H. Zhang, Y. Zhao, B. Yin, Q. Pan, J. Kang, N. Zheng, X. Liu, J. Qiu, Z. Yang, G. Dong, Adv. Mater. 2022, 34, e2201413.
[12]
X. Yu, L. Wu, D. Yang, M. Cao, X. Fan, H. Lin, Q. Zhong, Y. Xu, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 14527.
CrossRef Google scholar
[13]
P. Ma, Y. Hou, Y. Zheng, J. Su, L. Li, N. Liu, Z. Zhang, Y. Ma, Y. Gao, Chem. Eng. J. 2022, 436, 135077.
CrossRef Google scholar
[14]
M. Li, Z. Xia, Chem. Soc. Rev. 2021, 50, 2626.
CrossRef Google scholar
[15]
Y. Wang, F. Zhang, J. Ma, Z. Ma, X. Chen, D. Wu, X. Li, Z. Shi, C. Shan, EcoMat2022, 4, e12160.
[16]
O. Stroyuk, O. Raievska, J. Hauch, C. J. Brabec, Angew. Chem. Int. Ed. 2022, 135, e202212668.
[17]
J. Q. Zhao, H. S. Shi, L. R. Zeng, H. Ge, Y. H. Hou, X. M. Wu, C. Y. Yue, X. W. Lei, Chem. Eng. J. 2021, 431, 134336.
CrossRef Google scholar
[18]
Z. Zhu, X. Jiang, D. Yu, N. Yu, Z. Ning, Q. Mi, ACS Energy Lett. 2022, 7, 2079.
CrossRef Google scholar
[19]
Z. Gao, H. Zhou, K. Dong, C. Wang, J. Wei, Z. Li, J. Li, Y. Liu, J. Zhao, G. Fang, Nano-Micro Lett. 2022, 14, 481.
[20]
W. Lin, X. Hu, L. Mo, X. Jiang, X. Xing, L. Shui, S. Priya, K. Wang, G. Zhou, Adv. Opt. Mater. 2021, 9, 2100261.
[21]
H. Lin, Q. Wei, B. Ke, W. Lin, H. Zhao, B. Zou, J. Phys. Chem. Lett. 2023, 14, 1460.
CrossRef Google scholar
[22]
Z. Tan, Y. Chu, J. Chen, J. Li, G. Ji, G. Niu, L. Gao, Z. Xiao, J. Tang, Adv. Mater. 2020, 32, 2002443.
[23]
G. Zhang, P. Dang, H. Xiao, H. Lian, S. Liang, L. Yang, Z. Cheng, G. Li, J. Lin, Adv. Opt. Mater. 2021, 9, 2101637.
[24]
L. Zhou, L. Zhang, H. Li, W. Shen, M. Li, R. He, Adv. Funct. Mater. 2021, 31, 2108561.
[25]
C. Wang, Y. Li, Q. Lv, H. Zheng, G. Zhu, X. Xu, Y. Wang, Chem. Eng. J. 2022, 431, 134135.
CrossRef Google scholar
[26]
J. Li, Z. Tan, M. Hu, C. Chen, J. Luo, S. Li, L. Gao, Z. Xiao, G. Niu, J. Tang, Front. Optoelectron. 2019, 12, 352.
CrossRef Google scholar
[27]
R. X. Liu, W. J. Zhang, T. Z. Wen, X. Wen, C. Ding, Z. F. Li, W. B. Yan, J. Phys. Chem. Lett. 2022, 13, 11143.
CrossRef Google scholar
[28]
J. Jin, Y. Peng, Y. Xu, K. Han, A. Zhang, X.-B. Yang, Z. Xia, Chem. Mater. 2022, 34, 5717.
CrossRef Google scholar
[29]
Z. Wang, Z. Zhang, L. Tao, N. Shen, B. Hu, L. Gong, J. Li, X. Chen, X. Huang, Angew. Chem. Int. Ed. 2019, 58, 9974.
CrossRef Google scholar
[30]
G. Song, M. Li, Y. Yang, F. Liang, Q. Huang, X. Liu, P. Gong, Z. Xia, Z. Lin, J. Phys. Chem. Lett. 2020, 11, 1808.
CrossRef Google scholar
[31]
L. Lian, P. Zhang, X. Zhang, Q. Ye, W. Qi, L. Zhao, J. Gao, D. Zhang, J. Zhang, ACS App. Mater. Inter. 2021, 13, 58908.
CrossRef Google scholar
[32]
W. Lin, Q. Wei, T. Huang, X. Meng, Y. Tian, H. Peng, B. Zou, J. Mater. Chem. C2023, 11, 5688.
CrossRef Google scholar
[33]
W. Huang, H. Peng, Q. Wei, J. Xia, X. He, B. Ke, Y. Tian, B. Zou, Adv. Opt. Mater. 2023, 11, 2203103.
[34]
K. M. McCall, V. Morad, B. M. Benin, M. V. Kovalenko, ACS Mater. Lett. 2020, 2, 1218.
CrossRef Google scholar
[35]
Z. Li, Y. Li, P. Liang, T. Zhou, L. Wang, R.-J. Xie, Chem. Mater. 2019, 31, 9363.
CrossRef Google scholar
[36]
H. Peng, X. He, Q. Wei, Y. Tian, W. Lin, S. Yao, B. Zou, ACS App. Mater. Inter. 2022, 14, 45611.
CrossRef Google scholar
[37]
H. Peng, Y. Tian, Z. Yu, X. Wang, B. Ke, Y. Zhao, T. Dong, J. Wang, B. Zou, Sci. China Mater. 2022, 65, 1594.
CrossRef Google scholar
[38]
H. Peng, Y. Tian, X. Wang, T. Huang, Y. Xiao, T. Dong, J. Hu, J. Wang, B. Zou, J. Mater. Chem. C2021, 9, 12184.
CrossRef Google scholar
[39]
L. Zhou, J.-F. Liao, D.-B. Kuang, Adv. Opt. Mater. 2021, 9, 2100544.
[40]
H. Peng, B. Zou, J. Phys. Chem. Lett. 2022, 13, 1752.
CrossRef Google scholar
[41]
A. Biswas, R. Bakthavatsalam, B. P. Mali, V. Bahadur, C. Biswas, S. S. K. Raavi, R. G. Gonnade, J. Kundu, J. Mater. Chem. C2021, 9, 348.
CrossRef Google scholar
[42]
T. V. Sedakova, A. G. Mirochnik, V. E. Karasev, Opt. Spectrosc. 2008, 105, 517.
CrossRef Google scholar
[43]
X. Han, P. Cheng, R. Shi, Y. Zheng, S. Qi, J. Xu, X.-H. Bu, Mater. Horizons2023, 10, 1005.
CrossRef Google scholar
[44]
M. S. Molokeev, B. Su, A. S. Aleksandrovsky, N. N. Golovnev, M. E. Plyaskin, Z. Xia, Chem. Mater. 2022, 34, 537.
CrossRef Google scholar
[45]
C. Sun, Z. Deng, Z. Li, Z. Chen, X. Zhang, J. Chen, H. Lu, P. Canepa, R. Chen, L. Mao, Angew. Chem. Int. Ed. 2023, 62, e202216720.
[46]
L. Mao, P. Guo, S. Wang, A. K. Cheetham, R. Seshadri, J. Am. Chem. Soc. 2020, 142, 13582.
CrossRef Google scholar
[47]
Z. Wang, Z. Wang, Y. Zheng, Q. He, Y. Wang, S. Cai, Sci. Adv. 2020, 6, eabc0034.
[48]
J.-Q. Zhao, Y.-Y. Ma, X.-J. Zhao, Y.-J. Gao, Z.-Y. Xu, P.-C. Xiao, C.-Y. Yue, X.-W. Lei, Research2023, 6, 0094.
[49]
C. Sun, J.-P. Zang, Y.-Q. Liu, Q.-Q. Zhong, X.-X. Xing, J.-P. Li, C.-Y. Yue, X.-W. Lei, CCS Chem. 2021, 41, 3341.
[50]
S. Y. Jin, Q. L. Wei, H. Peng, B. Ke, W. C. Lin, B. He, X. C. Zhong, B. S. Zou, New J. Chem. 2023, 47, 8249.
CrossRef Google scholar
[51]
H. Peng, S. Yao, Y. Guo, R. Zhi, X. Wang, F. Ge, Y. Tian, J. Wang, B. Zou, J. Phys. Chem. Lett. 2020, 11, 4703.
CrossRef Google scholar
[52]
J.-L. Li, Y.-F. Sang, L.-J. Xu, H.-Y. Lu, J.-Y. Wang, Z.-N. Chen, Angew. Chem. Int. Ed. 2021, 61, e202113450.
[53]
H. Peng, Y. Tian, X. Wang, T. Dong, Z. Yu, Y. Xiao, Z. Zhang, J. Wang, B. Zou, J. Phys. Chem. C2022, 126, 8545.
CrossRef Google scholar
[54]
Y. Tian, H. Peng, Q. Wei, Y. Chen, J. Xia, W. Lin, C. Peng, X. He, B. Zou, Chem. Eng. J. 2023, 458.
CrossRef Google scholar
[55]
J. Huang, T. Chang, R. Zeng, J. Yan, Q. Wei, W. Zhou, S. Cao, B. Zou, Adv. Opt. Mater. 2021, 9, 2002267.
[56]
Y. C. Peng, H. W. Lin, S. H. Zhou, J. C. Jin, T. H. Zhuang, A. Ablez, Z. P. Wang, K. Z. Du, X. Y. Huang, Molecules2023, 28, 1978.
CrossRef Google scholar
[57]
X. Y. Lu, H. Peng, Q. L. Wei, W. C. Lin, Y. Tian, T. Z. Li, S. C. Zhou, J. L. Zhao, B. S. Zou, Mater. Today Phys. 2023, 35, 101085.
CrossRef Google scholar
[58]
H. Peng, Y. Xiao, Y. Tian, X. Wang, T. Huang, T. Dong, Y. Zhao, J. Wang, B. Zou, J. Mater. Chem. C2021, 9, 16014.
CrossRef Google scholar
[59]
X. He, H. Peng, Q. Wei, Y. Dai, J. Xia, H. Zhao, S. Zhou, B. Zou, J. Phys. Chem. C2022, 127, 807.
[60]
H. Peng, X. Wang, Z. Zhang, Y. Tian, Y. Xiao, J. Hu, J. Wang, B. Zou, Chem. Commun. 2021, 57, 8162.
CrossRef Google scholar
[61]
D.-Y. Li, Y. Cheng, Y.-H. Hou, J.-H. Song, C.-J. Sun, C.-Y. Yue, Z.-H. Jing, X.-W. Lei, J. Mater. Chem. C2022, 10, 3746.
CrossRef Google scholar
[62]
C.-M. Shi, J.-L. Li, L.-J. Xu, Y. Wu, H.-L. Xuan, J.-Y. Wang, Z.-N. Chen, Sci. China Mater. 2022, 65, 1876.
CrossRef Google scholar
[63]
D.-Y. Li, Y. Cheng, C.-J. Sun, Z.-Y. Xu, Y.-M. Sun, Y.-J. Wang, X. Yan, Y.-F. Wu, X.-W. Lei, C.-Y. Yue, Chem. Asian. J. 2022, 17, e202200502.
[64]
W. Ma, J. Yin, X. Chen, C. Sun, X. Song, H. Fei, Chem. Mater. 2022, 34, 4403.
CrossRef Google scholar
[65]
F. Zhang, W. Liang, L. Wang, Z. Ma, X. Ji, M. Wang, Y. Wang, X. Chen, D. Wu, X. Li, Y. Zhang, C. Shan, Z. Shi, Adv. Funct. Mater. 2021, 31, 2105771.
[66]
X. Zhang, B. Zhou, X. Chen, W. W. Yu, Inorg. Chem. 2021, 61, 399.
[67]
J.-Q. Zhao, H.-S. Shi, L.-R. Zeng, H. Ge, Y.-H. Hou, X.-M. Wu, C.-Y. Yue, X.-W. Lei, Chem. Eng. J. 2022, 431, 134336.
CrossRef Google scholar
[68]
S. B. Jo, J. Kang, J. H. Cho, Adv. Sci. 2021, 8, 2004216.
[69]
Y.-J. Ma, G. Xiao, X. Fang, T. Chen, D. Yan, Angew. Chem. Int. Ed.2023, 62, e202217054.
[70]
S. Liu, Y. Lin, D. Yan, Sci. Bull. 2022, 67, 2076.
CrossRef Google scholar
[71]
F. Nie, B. Zhou, K.-Z. Wang, D. Yan, Chem. Eng. J. 2022, 430, 133084.
CrossRef Google scholar
[72]
J. P. Perdew, M. Levy, Phys. Rev. Lett. 1983, 51, 1884.
CrossRef Google scholar
[73]
G. Kresse, J. Furthmüller, Phys. Rev. B1996, 54, 11169.
CrossRef Google scholar
[74]
P. E. Blöchl, Phys. Rev. B1994, 50, 17953.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/