PDF
Abstract
Recently, many lead-free metal halides with diverse structures and highly efficient emission have been reported. However, their poor stability and single-mode emission color severely limit their applications. Herein, three homologous Sb3+-doped zero-dimensional (0D) air-stable Sn(IV)-based metal halides with different crystal structures were developed by inserting a single organic ligand into SnCl4 lattice, which brings different optical properties. Under photoexcitation, (C25H22P)SnCl5@Sb·CH4O (Sb3+−1) does not emit light, (C25H22P)2SnCl6@Sb-α (Sb3+−2α) shines bright yellow emission with a photoluminescence quantum yield (PLQY) of 92%, and (C25H22P)2SnCl6@Sb-β (Sb3+−2β) exhibits intense red emission with a PLQY of 78%. The above three compounds show quite different optical properties should be due to their different crystal structures and the lattice distortions. Particularly, Sb3+−1 can be successfully converted into Sb3+−2α under the treatment of C25H22PCl solution, accompanied by a transition from nonemission to efficient yellow emission, serving as a “turn-on” photoluminescence (PL) switching. Parallelly, a reversible structure conversion between Sb3+−2α and Sb3+−2β was witnessed after dichloromethane or volatilization treatment, accompanied by yellow and red emission switching. Thereby, a triple-mode tunable PL switching of off–onI–onII can be constructed in Sb3+-doped Sn(IV)-based compounds. Finally, we demonstrated the as-synthesized compounds in fluorescent anticounterfeiting, information encryption, and optical logic gates.
Keywords
information encryption
/
Sb 3+-doping
/
Sn(IV)-based metal halides
/
structural modulation
/
triple-mode
Cite this article
Download citation ▾
Xuefei He, Hui Peng, Qilin Wei, Zhijie Zhou, Guolun Zhang, Zhentao Du, Jialong Zhao, Bingsuo Zou.
Realizing efficient emission and triple-mode photoluminescence switching in air-stable tin(IV)-based metal halides via antimony doping and rational structural modulation.
Aggregate, 2024, 5(1): 407 DOI:10.1002/agt2.407
| [1] |
Z. Wang, X. Huang, Chem. Eur. J. 2022, 28, e202200609.
|
| [2] |
S. Feng, Y. Ma, S. Wang, S. Gao, Q. Huang, H. Zhen, D. Yan, Q. Ling, Z. Lin, Angew. Chem. Int. Ed. 2022, 134, e202116511.
|
| [3] |
B. Zhou, G. Xiao, D. Yan, Adv. Mater. 2021, 33, e2007571.
|
| [4] |
B. Zhou, D. Yan, Adv. Funct. Mater. 2023, 33, 2300735.
|
| [5] |
J. Liu, Y. Molard, M. E. Prévôt, T. Hegmann, ACS App. Mater. Inter.2022, 14, 29398.
|
| [6] |
Y. Shi, J. Han, X. Jin, W. Miao, Y. Zhang, P. Duan, Adv. Sci. 2022, 9, 2201565.
|
| [7] |
A. Xu, G. Wang, Y. Li, H. Dong, S. Yang, P. He, G. Ding, Small2020, 16, e2004621.
|
| [8] |
J. Chen, Y. Guo, B. Chen, W. Zheng, F. Wang, J. Am. Chem. Soc. 2022, 144, 22295.
|
| [9] |
Y. Sun, Y. Li, W. Zhang, P. Zhu, H. Zhu, W. Qin, G. Wang, Adv. Opt. Mater. 2021, 10, 2101765.
|
| [10] |
H. Zhao, T. Lin, S. Shi, W. Bai, T. Xuan, T. Zhou, R.-J. Xie, J. Mater. Chem. C2022, 10, 7552.
|
| [11] |
M. Li, D. Yang, X. Huang, H. Zhang, Y. Zhao, B. Yin, Q. Pan, J. Kang, N. Zheng, X. Liu, J. Qiu, Z. Yang, G. Dong, Adv. Mater. 2022, 34, e2201413.
|
| [12] |
X. Yu, L. Wu, D. Yang, M. Cao, X. Fan, H. Lin, Q. Zhong, Y. Xu, Q. Zhang, Angew. Chem. Int. Ed. 2020, 59, 14527.
|
| [13] |
P. Ma, Y. Hou, Y. Zheng, J. Su, L. Li, N. Liu, Z. Zhang, Y. Ma, Y. Gao, Chem. Eng. J. 2022, 436, 135077.
|
| [14] |
M. Li, Z. Xia, Chem. Soc. Rev. 2021, 50, 2626.
|
| [15] |
Y. Wang, F. Zhang, J. Ma, Z. Ma, X. Chen, D. Wu, X. Li, Z. Shi, C. Shan, EcoMat2022, 4, e12160.
|
| [16] |
O. Stroyuk, O. Raievska, J. Hauch, C. J. Brabec, Angew. Chem. Int. Ed. 2022, 135, e202212668.
|
| [17] |
J. Q. Zhao, H. S. Shi, L. R. Zeng, H. Ge, Y. H. Hou, X. M. Wu, C. Y. Yue, X. W. Lei, Chem. Eng. J. 2021, 431, 134336.
|
| [18] |
Z. Zhu, X. Jiang, D. Yu, N. Yu, Z. Ning, Q. Mi, ACS Energy Lett. 2022, 7, 2079.
|
| [19] |
Z. Gao, H. Zhou, K. Dong, C. Wang, J. Wei, Z. Li, J. Li, Y. Liu, J. Zhao, G. Fang, Nano-Micro Lett. 2022, 14, 481.
|
| [20] |
W. Lin, X. Hu, L. Mo, X. Jiang, X. Xing, L. Shui, S. Priya, K. Wang, G. Zhou, Adv. Opt. Mater. 2021, 9, 2100261.
|
| [21] |
H. Lin, Q. Wei, B. Ke, W. Lin, H. Zhao, B. Zou, J. Phys. Chem. Lett. 2023, 14, 1460.
|
| [22] |
Z. Tan, Y. Chu, J. Chen, J. Li, G. Ji, G. Niu, L. Gao, Z. Xiao, J. Tang, Adv. Mater. 2020, 32, 2002443.
|
| [23] |
G. Zhang, P. Dang, H. Xiao, H. Lian, S. Liang, L. Yang, Z. Cheng, G. Li, J. Lin, Adv. Opt. Mater. 2021, 9, 2101637.
|
| [24] |
L. Zhou, L. Zhang, H. Li, W. Shen, M. Li, R. He, Adv. Funct. Mater. 2021, 31, 2108561.
|
| [25] |
C. Wang, Y. Li, Q. Lv, H. Zheng, G. Zhu, X. Xu, Y. Wang, Chem. Eng. J. 2022, 431, 134135.
|
| [26] |
J. Li, Z. Tan, M. Hu, C. Chen, J. Luo, S. Li, L. Gao, Z. Xiao, G. Niu, J. Tang, Front. Optoelectron. 2019, 12, 352.
|
| [27] |
R. X. Liu, W. J. Zhang, T. Z. Wen, X. Wen, C. Ding, Z. F. Li, W. B. Yan, J. Phys. Chem. Lett. 2022, 13, 11143.
|
| [28] |
J. Jin, Y. Peng, Y. Xu, K. Han, A. Zhang, X.-B. Yang, Z. Xia, Chem. Mater. 2022, 34, 5717.
|
| [29] |
Z. Wang, Z. Zhang, L. Tao, N. Shen, B. Hu, L. Gong, J. Li, X. Chen, X. Huang, Angew. Chem. Int. Ed. 2019, 58, 9974.
|
| [30] |
G. Song, M. Li, Y. Yang, F. Liang, Q. Huang, X. Liu, P. Gong, Z. Xia, Z. Lin, J. Phys. Chem. Lett. 2020, 11, 1808.
|
| [31] |
L. Lian, P. Zhang, X. Zhang, Q. Ye, W. Qi, L. Zhao, J. Gao, D. Zhang, J. Zhang, ACS App. Mater. Inter. 2021, 13, 58908.
|
| [32] |
W. Lin, Q. Wei, T. Huang, X. Meng, Y. Tian, H. Peng, B. Zou, J. Mater. Chem. C2023, 11, 5688.
|
| [33] |
W. Huang, H. Peng, Q. Wei, J. Xia, X. He, B. Ke, Y. Tian, B. Zou, Adv. Opt. Mater. 2023, 11, 2203103.
|
| [34] |
K. M. McCall, V. Morad, B. M. Benin, M. V. Kovalenko, ACS Mater. Lett. 2020, 2, 1218.
|
| [35] |
Z. Li, Y. Li, P. Liang, T. Zhou, L. Wang, R.-J. Xie, Chem. Mater. 2019, 31, 9363.
|
| [36] |
H. Peng, X. He, Q. Wei, Y. Tian, W. Lin, S. Yao, B. Zou, ACS App. Mater. Inter. 2022, 14, 45611.
|
| [37] |
H. Peng, Y. Tian, Z. Yu, X. Wang, B. Ke, Y. Zhao, T. Dong, J. Wang, B. Zou, Sci. China Mater. 2022, 65, 1594.
|
| [38] |
H. Peng, Y. Tian, X. Wang, T. Huang, Y. Xiao, T. Dong, J. Hu, J. Wang, B. Zou, J. Mater. Chem. C2021, 9, 12184.
|
| [39] |
L. Zhou, J.-F. Liao, D.-B. Kuang, Adv. Opt. Mater. 2021, 9, 2100544.
|
| [40] |
H. Peng, B. Zou, J. Phys. Chem. Lett. 2022, 13, 1752.
|
| [41] |
A. Biswas, R. Bakthavatsalam, B. P. Mali, V. Bahadur, C. Biswas, S. S. K. Raavi, R. G. Gonnade, J. Kundu, J. Mater. Chem. C2021, 9, 348.
|
| [42] |
T. V. Sedakova, A. G. Mirochnik, V. E. Karasev, Opt. Spectrosc. 2008, 105, 517.
|
| [43] |
X. Han, P. Cheng, R. Shi, Y. Zheng, S. Qi, J. Xu, X.-H. Bu, Mater. Horizons2023, 10, 1005.
|
| [44] |
M. S. Molokeev, B. Su, A. S. Aleksandrovsky, N. N. Golovnev, M. E. Plyaskin, Z. Xia, Chem. Mater. 2022, 34, 537.
|
| [45] |
C. Sun, Z. Deng, Z. Li, Z. Chen, X. Zhang, J. Chen, H. Lu, P. Canepa, R. Chen, L. Mao, Angew. Chem. Int. Ed. 2023, 62, e202216720.
|
| [46] |
L. Mao, P. Guo, S. Wang, A. K. Cheetham, R. Seshadri, J. Am. Chem. Soc. 2020, 142, 13582.
|
| [47] |
Z. Wang, Z. Wang, Y. Zheng, Q. He, Y. Wang, S. Cai, Sci. Adv. 2020, 6, eabc0034.
|
| [48] |
J.-Q. Zhao, Y.-Y. Ma, X.-J. Zhao, Y.-J. Gao, Z.-Y. Xu, P.-C. Xiao, C.-Y. Yue, X.-W. Lei, Research2023, 6, 0094.
|
| [49] |
C. Sun, J.-P. Zang, Y.-Q. Liu, Q.-Q. Zhong, X.-X. Xing, J.-P. Li, C.-Y. Yue, X.-W. Lei, CCS Chem. 2021, 41, 3341.
|
| [50] |
S. Y. Jin, Q. L. Wei, H. Peng, B. Ke, W. C. Lin, B. He, X. C. Zhong, B. S. Zou, New J. Chem. 2023, 47, 8249.
|
| [51] |
H. Peng, S. Yao, Y. Guo, R. Zhi, X. Wang, F. Ge, Y. Tian, J. Wang, B. Zou, J. Phys. Chem. Lett. 2020, 11, 4703.
|
| [52] |
J.-L. Li, Y.-F. Sang, L.-J. Xu, H.-Y. Lu, J.-Y. Wang, Z.-N. Chen, Angew. Chem. Int. Ed. 2021, 61, e202113450.
|
| [53] |
H. Peng, Y. Tian, X. Wang, T. Dong, Z. Yu, Y. Xiao, Z. Zhang, J. Wang, B. Zou, J. Phys. Chem. C2022, 126, 8545.
|
| [54] |
Y. Tian, H. Peng, Q. Wei, Y. Chen, J. Xia, W. Lin, C. Peng, X. He, B. Zou, Chem. Eng. J. 2023, 458.
|
| [55] |
J. Huang, T. Chang, R. Zeng, J. Yan, Q. Wei, W. Zhou, S. Cao, B. Zou, Adv. Opt. Mater. 2021, 9, 2002267.
|
| [56] |
Y. C. Peng, H. W. Lin, S. H. Zhou, J. C. Jin, T. H. Zhuang, A. Ablez, Z. P. Wang, K. Z. Du, X. Y. Huang, Molecules2023, 28, 1978.
|
| [57] |
X. Y. Lu, H. Peng, Q. L. Wei, W. C. Lin, Y. Tian, T. Z. Li, S. C. Zhou, J. L. Zhao, B. S. Zou, Mater. Today Phys. 2023, 35, 101085.
|
| [58] |
H. Peng, Y. Xiao, Y. Tian, X. Wang, T. Huang, T. Dong, Y. Zhao, J. Wang, B. Zou, J. Mater. Chem. C2021, 9, 16014.
|
| [59] |
X. He, H. Peng, Q. Wei, Y. Dai, J. Xia, H. Zhao, S. Zhou, B. Zou, J. Phys. Chem. C2022, 127, 807.
|
| [60] |
H. Peng, X. Wang, Z. Zhang, Y. Tian, Y. Xiao, J. Hu, J. Wang, B. Zou, Chem. Commun. 2021, 57, 8162.
|
| [61] |
D.-Y. Li, Y. Cheng, Y.-H. Hou, J.-H. Song, C.-J. Sun, C.-Y. Yue, Z.-H. Jing, X.-W. Lei, J. Mater. Chem. C2022, 10, 3746.
|
| [62] |
C.-M. Shi, J.-L. Li, L.-J. Xu, Y. Wu, H.-L. Xuan, J.-Y. Wang, Z.-N. Chen, Sci. China Mater. 2022, 65, 1876.
|
| [63] |
D.-Y. Li, Y. Cheng, C.-J. Sun, Z.-Y. Xu, Y.-M. Sun, Y.-J. Wang, X. Yan, Y.-F. Wu, X.-W. Lei, C.-Y. Yue, Chem. Asian. J. 2022, 17, e202200502.
|
| [64] |
W. Ma, J. Yin, X. Chen, C. Sun, X. Song, H. Fei, Chem. Mater. 2022, 34, 4403.
|
| [65] |
F. Zhang, W. Liang, L. Wang, Z. Ma, X. Ji, M. Wang, Y. Wang, X. Chen, D. Wu, X. Li, Y. Zhang, C. Shan, Z. Shi, Adv. Funct. Mater. 2021, 31, 2105771.
|
| [66] |
X. Zhang, B. Zhou, X. Chen, W. W. Yu, Inorg. Chem. 2021, 61, 399.
|
| [67] |
J.-Q. Zhao, H.-S. Shi, L.-R. Zeng, H. Ge, Y.-H. Hou, X.-M. Wu, C.-Y. Yue, X.-W. Lei, Chem. Eng. J. 2022, 431, 134336.
|
| [68] |
S. B. Jo, J. Kang, J. H. Cho, Adv. Sci. 2021, 8, 2004216.
|
| [69] |
Y.-J. Ma, G. Xiao, X. Fang, T. Chen, D. Yan, Angew. Chem. Int. Ed.2023, 62, e202217054.
|
| [70] |
S. Liu, Y. Lin, D. Yan, Sci. Bull. 2022, 67, 2076.
|
| [71] |
F. Nie, B. Zhou, K.-Z. Wang, D. Yan, Chem. Eng. J. 2022, 430, 133084.
|
| [72] |
J. P. Perdew, M. Levy, Phys. Rev. Lett. 1983, 51, 1884.
|
| [73] |
G. Kresse, J. Furthmüller, Phys. Rev. B1996, 54, 11169.
|
| [74] |
P. E. Blöchl, Phys. Rev. B1994, 50, 17953.
|
RIGHTS & PERMISSIONS
2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.