Click-hydrogel delivered aggregation-induced emissive nanovesicles for simultaneous remodeling and antibiosis of deep burn wounds

Xu Chen, Meijiao Zhao, Qihu Xie, Sitong Zhou, Xiaoping Zhong, Judun Zheng, Ronghua Yang, Xianjin Du, Jinyu Xia, Yuhui Liao

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 406. DOI: 10.1002/agt2.406
RESEARCH ARTICLE

Click-hydrogel delivered aggregation-induced emissive nanovesicles for simultaneous remodeling and antibiosis of deep burn wounds

Author information +
History +

Abstract

As a high-risk trauma, deep burns are always hindered in their repair process by decreased tissue regeneration capacity and persistent infections. In this study, we developed a simultaneous strategy for deep burn wounds treatment using functional nanovesicles with antibacterial and tissue remodeling properties, delivered via a click-chemistry hydrogel. An aggregation-induced emission photosensitizer of 4-(2-(5-(4-(diphenylamino)phenyl)thiophen-2-yl)vinyl)-1-(2-hydroxyethyl) pyridin-1-ium bromide (THB) with excellent photodynamic properties was first prepared, and then combined with readily accessible adipose stem cells-derived nanovesicles to generate the THB functionalized nanovesicles (THB@ANVs). The THB@ANVs showed strong antibacterial activity against Gram-positive bacteria (up to 100% killing rate), and also beneficial effects on tissue remodeling, including promoting cell migration, cell proliferation, and regulating immunity. In addition, we prepared a click-hydrogel of carboxymethyl chitosan for effective delivery of THB@ANVs on wounds. This hydrogel could be injected to conform to the wound morphology while responding to the acidic microenvironment. In vivo evaluations of wound healing revealed that the THB@ANVs hydrogel dressing efficiently accelerated the healing of second-degree burn wounds by reducing bacterial growth, regulating inflammation, promoting early angiogenesis, and collagen deposition. This study provides a promising candidate of wound dressing with diverse functions for deep burn wound repair.

Keywords

aggregation-induced emission / burn wounds / nanovesicles

Cite this article

Download citation ▾
Xu Chen, Meijiao Zhao, Qihu Xie, Sitong Zhou, Xiaoping Zhong, Judun Zheng, Ronghua Yang, Xianjin Du, Jinyu Xia, Yuhui Liao. Click-hydrogel delivered aggregation-induced emissive nanovesicles for simultaneous remodeling and antibiosis of deep burn wounds. Aggregate, 2024, 5(1): 406 https://doi.org/10.1002/agt2.406

References

[1]
V. Pavoni, L. Gianesello, L. Paparella, L. T. Buoninsegni, E. Barboni, Scand. J. Trauma Resusc. Emerg. Med. 2010, 18, 24.
[2]
Y. Yoshino, M. Ohtsuka, M. Kawaguchi, K. Sakai, A. Hashimoto, M. Hayashi, N. Madokoro, Y. Asano, M. Abe, T. Ishii, T. Isei, T. Ito, Y. Inoue, S. Imafuku, R. Irisawa, M. Ohtsuka, F. Ogawa, T. Kadono, T. Kawakami, R. Kukino, T. Kono, M. Kodera, M. Takahara, M. Tanioka, T. Nakanishi, Y. Nakamura, M. Hasegawa, M. Fujimoto, H. Fujiwara, T. Maekawa, K. Matsuo, O. Yamasaki, A. Le Pavoux, T. Tachibana, H. Ihn, J. Dermatol. 2016, 43, 989.
CrossRef Google scholar
[3]
C. E. Salyer, C. Bomholt, N. Beckmann, C. B. Bergmann, C. A. Plattner, C. C. Caldwell, Surg. Infect. 2021, 22, 113.
CrossRef Google scholar
[4]
M. P. Rowan, L. C. Cancio, E. A. Elster, D. M. Burmeister, L. F. Rose, S. Natesan, R. K. Chan, R. J. Christy, K. K. Chung, Crit. Care 2015, 19, 243.
[5]
L. Li, Z. Y. He, X. W. Wei, Y. Q. Wei, Regen. Biomater. 2016, 3, 99.
CrossRef Google scholar
[6]
P. Everts, K. Onishi, P. Jayaram, J. F. Lana, K. Mautner, Int. J. Mol. Sci. 2020, 21, 7794.
CrossRef Google scholar
[7]
Z. Li, P. Maitz, Burns Trauma 2018, 6, 13.
[8]
E. Coffin, A. Grangier, G. Perrod, M. Piffoux, I. Marangon, I. Boucenna, A. Berger, L. M’Harzi, J. Assouline, T. Lecomte, A. Chipont, C. Guérin, F. Gazeau, C. Wilhelm, C. Cellier, O. Clément, A. K. A. Silva, G. Rahmi, Nanoscale 2021, 13, 14866.
CrossRef Google scholar
[9]
A. Shpichka, D. Butnaru, E. A. Bezrukov, R. B. Sukhanov, A. Atala, V. Burdukovskii, Y. Zhang, P. Timashev, Stem Cell Res. Ther. 2019, 10, 94.
[10]
R. Yang, F. Liu, J. Wang, X. Chen, J. Xie, K. Xiong, Stem Cell Res. Ther. 2019, 10, 229.
[11]
X. Sun, W. Song, L. Teng, Y. Huang, J. Liu, Y. Peng, X. Lu, J. Yuan, X. Zhao, Q. Zhao, Y. Xu, J. Shen, X. Peng, L. Ren, Bioact. Mater. 2022, 25, 640.
CrossRef Google scholar
[12]
S. Rani, A. E. Ryan, M. D. Griffin, T. Ritter, Mol. Ther. 2015, 23, 812.
CrossRef Google scholar
[13]
P. Hu, Q. Yang, Q. Wang, C. Shi, D. Wang, U. Armato, I. D. Pra, A. Chiarini, Burns Trauma 2019, 7, 38.
[14]
C. Liu, Y. Wang, L. Li, D. He, J. Chi, Q. Li, Y. Wu, Y. Zhao, S. Zhang, L. Wang, Z. Fan, Y. Liao. J. Control. Release 2022, 349, 679.
CrossRef Google scholar
[15]
P. Guo, S. Busatto, J. Huang, G. Morad, M. A. Moses, Adv. Funct. Mater. 2021, 31, 2008326.
[16]
H. Wu, X. Jiang, Y. Li, Y. Zhou, T. Zhang, P. Zhi, J. Gao, Adv. Funct. Mater. 2020, 30, 2006169.
[17]
C. Hu, T. Lei, Y. Wang, J. Cao, X. Yang, L. Qin, R. Liu, Y. Zhou, F. Tong, C. S. Umeshappa, H. Gao, Biomaterials 2020, 255, 120159.
CrossRef Google scholar
[18]
Y. Wen, Q. Fu, A. Soliwoda, S. Zhang, M. Zheng, W. Mao, Y. Wan, J. Extracell. Vesicles 2022, 1, 100004.
CrossRef Google scholar
[19]
J. Li, H. Zhou, C. Liu, S. Zhang, R. Du, Y. Deng, X. Zou, Aggregate 2023, e359.
CrossRef Google scholar
[20]
B. Li, W. Wang, L. Zhao, D. Yan, X. Li, Q. Gao, J. Zheng, S. Zhou, S. Lai, Y. Feng, J. Zhang, H. Jiang, C. Long, W. Gan, X. Chen, D. Wang, B. Z. Tang, Y. Liao, ACS Nano 2023, 17, 4601.
CrossRef Google scholar
[21]
E. B. Souto, A. F. Ribeiro, M. I. Ferreira, M. C. Teixeira, A. A. M. Shimojo, J. L. Soriano, B. C. Naveros, A. Durazzo, M. Lucarini, S. B. Souto, A. Santini, Int. J. Mol. Sci. 2020, 21, 393.
CrossRef Google scholar
[22]
G. Taubes, Science 2008, 321, 356.
CrossRef Google scholar
[23]
J. Zhang, F. Zhou, Z. He, Y. Pan, S. Zhou, C. Yan, L. Luo, Y. Gao, ACS Appl. Mater. Interface 2022, 14, 30533.
CrossRef Google scholar
[24]
J. Zheng, X. Long, H. Chen, Z. Ji, B. Shu, R. Yue, Y. Liao, S. Ma, K. Qiao, Y. Liu, Y. Liao, Front. Mol. Biosci. 2022, 9, 845179.
[25]
J. Sun, H. Li, X. Gu, B. Z. Tang, Adv. Healthc. Mater. 2021, 10, e2101177.
[26]
D. Zhu, Y. Duo, M. Suo, Y. Zhao, L. Xia, Z. Zheng, Y. Li, B. Z. Tang, Angew. Chem. Int. Ed. Engl 2020, 59, 13836.
CrossRef Google scholar
[27]
K. Nuutila, E. Eriksson, Adv. Wound Care 2021, 10, 685.
CrossRef Google scholar
[28]
C. Han, D. Jeong, B. Kim, W. Jo, H. Kang, S. Cho, K. H. Kim, J. Park, ACS Biomater. Sci. Eng. 2019, 5, 1534.
CrossRef Google scholar
[29]
Y. Yao, A. Zhang, C. Yuan, X. Chen, Y. Liu, Biomater. Sci. 2021, 9, 4523.
CrossRef Google scholar
[30]
H. Zhang, M. Song, C. Hu, Z. Zhang, S. Zhang, Y. Zhang, Y. Yang, P. Zhou, L. Zheng, L. Li, M. Mao, Y. S. Zhang, P. Ji, X. Zhang, Aggregate 2023, e332.
CrossRef Google scholar
[31]
C. Owh, V. Ow, Q. Lin, J. H. M. Wong, D. Ho, X. J. Loh, K. Xue, Biomater. Adv. 2022, 141, 213100.
CrossRef Google scholar
[32]
E. Coffin, A. Grangier, G. Perrod, M. Piffoux, I. Marangon, I. Boucenna, A. Berger, L. M’Harzi, J. Assouline, T. Lecomte, A. Chipont, C. Guerin, F. Gazeau, C. Wilhelm, C. Cellier, O. Clement, A. K. A. Silva, G. Rahmi, Nanoscale 2021, 13, 14866.
CrossRef Google scholar
[33]
J. Huang, X. Jiang, ACS Appl. Mater. Inter. 2018, 10, 361.
CrossRef Google scholar
[34]
C. Théry, S. Amigorena, G. Raposo, A. Clayton, Curr. Protoc. Cell Biol. 2006, Chapter 3:Unit 3.22, 1.
[35]
M. Kang, C. Zhou, S. Wu, B. Yu, Z. Zhang, N. Song, M. M. S. Lee, W. Xu, F. J. Xu, D. Wang, L. Wang, B. Z. Tang, J. Am. Chem. Soc. 2019, 141, 16781.
CrossRef Google scholar
[36]
D. Wang, H. Su, R. T. K. Kwok, X. Hu, H. Zou, Q. Luo, M. M. S. Lee, W. Xu, J. W. Y. Lam, B. Z. Tang, Chem. Sci. 2018, 9, 3685.
CrossRef Google scholar
[37]
J. Sun, Y. Bai, E. Y. Yu, G. Ding, H. Zhang, M. Duan, P. Huang, M. Zhang, H. Jin, R. T. Kwok, Y. Li, G. G. Shan, B. Z. Tang, H. Wang, Biomaterials 2022, 291, 121898.
CrossRef Google scholar
[38]
M. S. Kim, M. J. Haney, Y. Zhao, V. Mahajan, I. Deygen, N. L. Klyachko, E. Inskoe, A. Piroyan, M. Sokolsky, O. Okolie, S. D. Hingtgen, A. V. Kabanov, E. V. Batrakova, Nanomedicine 2016, 12, 655.
CrossRef Google scholar
[39]
Y. Xiong, Y. Xu, F. Zhou, Y. Hu, J. Zhao, Z. Liu, Q. Zhai, S. Qi, Z. Zhang, L. Chen, Bioeng. Transl. Med. 2023, 8, e10373.
[40]
H. Zhao, Q. Shang, Z. Pan, Y. Bai, Z. Li, H. Zhang, Q. Zhang, C. Guo, L. Zhang, Q. Wang, J. Diabetes 2018, 67, 235.
CrossRef Google scholar
[41]
X. Bai, J. Li, L. Li, M. Liu, Y. Liu, M. Cao, K. Tao, S. Xie, D. Hu, Front. Immunol. 2020, 11, 1391.
[42]
C. Li, S. Wei, Q. Xu, Y. Sun, X. Ning, Z. Wang, Stem Cell Rev. Rep. 2022, 18, 952.
CrossRef Google scholar
[43]
Y. An, S. Lin, X. Tan, S. Zhu, F. Nie, Y. Zhen, L. Gu, C. Zhang, B. Wang, W. Wei, D. Li, J. Wu, Cell Prolif. 2021, 54, e12993.
[44]
B. He, J. Zhang, J. Wang, Y. Wu, A. Qin, B. Z. Tang, Macromolecules 2020, 53, 5248.
CrossRef Google scholar
[45]
X. Chen, T. Bai, R. Hu, B. Song, L. Lu, J. Ling, A. Qin, B. Z. Tang, Macromolecules 2020, 53, 2516.
CrossRef Google scholar
[46]
M. He, L. Shi, G. Wang, Z. Cheng, L. Han, X. Zhang, C. Wang, J. Wang, P. Zhou, G. Wang, Int. J. Biol. Macromol. 2020, 155, 1245.
CrossRef Google scholar
[47]
W. Denissen, G. Rivero, R. Nicolaÿ, L. Leibler, J. M. Winne, F. E. D. Prez, Adv. Funct. Mater. 2015, 25, 2451.
CrossRef Google scholar
[48]
Z. Shariatinia, Int. J. Biol. Macromol. 2018, 120, 1406.
CrossRef Google scholar
[49]
S. Mascharak, H. E desJardins-Park, M. F. Davitt, M. Griffin, M. R. Borrelli, A. L. Moore, K. Chen, B. Duoto, M. Chinta, D. S. Foster, A. H. Shen, M. Januszyk, S. H. Kwon, G. Wernig, D. C. Wan, H. P. Lorenz, G. C. Gurtner, M. T. Longaker, Science 2021, 372, eaba2374.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/