Thermally activated delayed fluorescence carbazole-triazine dendrimer with bulky substituents

Hiroki Ikebe , Kohei Nakao , Eri Hisamura , Minori Furukori , Yasuo Nakayama , Takuya Hosokai , Minlang Yang , Guanting Liu , Takuma Yasuda , Ken Albrecht

Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 405

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) :405 DOI: 10.1002/agt2.405
RESEARCH ARTICLE

Thermally activated delayed fluorescence carbazole-triazine dendrimer with bulky substituents

Author information +
History +
PDF

Abstract

Carbazole-triazine dendrimers with a bulky terminal substituent were synthesized, and the thermally activated delayed fluorescence (TADF) property was investigated. Compared to unsubstituted carbazole dendrimers, dendrimers with bulky terminal substituents showed comparable to better photoluminescence quantum yields (PLQY) in neat films. Phenylfluorene (PF)-substituted dendrimers showed the highest PLQY of 81%, a small ΔEst of 0.06 eV, and the fastest reverse intersystem crossing (RISC) rate of ∼1 × 105 s−1 compared to other dendrimers. Phosphorescence measurements of dendrimers and dendrons (fragments) indicate that the close proximity of the triplet energy of phenylfluorene-substituted carbazole dendrons (3LE) to that of phenylfluorene-substituted dendrimers (1CT, 3CT) contributes to RISC promotion and improves TADF efficiency. Terminal modification fine-tunes the energy level and suppresses intermolecular interactions, and this study provides a guideline for designing efficient solution-processable and non-doped TADF materials.

Keywords

dendrimer / OLED / TADF

Cite this article

Download citation ▾
Hiroki Ikebe, Kohei Nakao, Eri Hisamura, Minori Furukori, Yasuo Nakayama, Takuya Hosokai, Minlang Yang, Guanting Liu, Takuma Yasuda, Ken Albrecht. Thermally activated delayed fluorescence carbazole-triazine dendrimer with bulky substituents. Aggregate, 2024, 5(1): 405 DOI:10.1002/agt2.405

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

a) C. A. Parker, C. G. Hatchard, Trans. Faraday Soc. 1961, 57, 1894; b) A. Maciejewski, M. Szymanski, R. P. Steer, J. Phys. Chem. 1986, 90, 6314; c) M. N. Berberan-Santos, J. M. M. Garcia, J. Am. Chem. Soc. 1996, 118, 9391.

[2]

a) A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, C. Adachi, Adv. Mater. 2009, 21, 4802; b) J. C. Deaton, S. C. Switalski, D. Y. Kondakov, R. H. Young, T. D. Pawlik, D. J. Giesen, S. B. Harkins, A. J. M. Miller, S. F. Mickenberg, J. C. Peters, J. Am. Chem. Soc. 2010, 132, 9499; c) F. B. Dias, K. N. Bourdakos, V. Jankus, K. C. Moss, K. T. Kamtekar, V. Bhalla, J. Santos, M. R. Bryce, A. P. Monkman, Adv. Mater. 2013, 25, 3707.

[3]

a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234; b) H. Wu, X.-C. Fan, H. Wang, F. Huang, X. Xiong, Y.-Z. Shi, K. Wang, J. Yu, X.-H. Zhang. Aggregate 2022, 4, e243.

[4]

a) N. Aizawa, A. Matsumoto, T. Yasuda, Sci. Adv. 2021, 7, eabe5769; b) H. Imahori, Y. Kobori, H. Kaji, Acc. Mater. Res. 2021, 2, 501.

[5]

a) R. Braveenth, H. Lee, J. D. Park, K. J. Yang, S. J. Hwang, K. R. Naveen, R. Lampande, J. H. Kwon, Adv. Funct. Mater. 2021, 31, 2105805; b) J. Han, Y. Chen, N. Li, Z. Huang, C. Yang. Aggregate 2022, 3, e182.

[6]

W. Xue, H. Yan, Y. He, L. Wu, X. Zhang, Y. Wu, J. Xu, J. He, C. Yan, H. Meng, Chem. Eur. J. 2022, 28, e202201006.

[7]

a) Y. Wada, H. Nakagawa, S. Matsumoto, Y. Wakisaka, H. Kaji, Nat. Photon. 2020, 14, 643; b) T. Hosokai, H. Matsuzaki, H. Nakanotani, K. Tokumaru, T. Tsutsui, A. Furube, K. Nasu, H. Nomura, M. Yahiro, C. Adachi, Sci. Adv. 2017, 3, e1603282.

[8]

a) T. Chatterjee, K. T. Wong, Adv. Opt. Mater. 2019, 7, 1800565; b) S. Y. Byeon, D. R. Lee, K. S. Yook, J. Y. Lee, Adv. Mater. 2019, 31, 1803714; c) U. Balijapalli, M. Tanaka, M. Auffray, C. Y. Chan, Y. T. Lee, Y. Tsuchiya, H. Nakanotani, C. Adachi, ACS Appl. Mater. Interfaces 2020, 12, 9498; d) Park IS, Min H, Yasuda T. Aggregate 2021, 2, 145.

[9]

a) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539; b) M. C. Gather, A. Köhnen, K. Meerholz, Adv. Mater. 2010, 23, 233; c) D. Di, A. S. Romanov, L. Yang, J. M. Richter, J. P. H. Rivett, S. Jones, T. H. Thomas, M. A. Jalebi, R. H. Friend, M. Linnolahti, M. Bochmann, D. Credgington, Science 2017, 356, 159; d) D. Liu, M. Zhang, W. Tian, W. Jiang, Y. Sun, Z. Zhao, B. Z. Tang, Aggregate 2022, 3, e164.

[10]

M. Godumala, S. Choi, M. J. Cho, D. H. Choi, J. Mater. Chem. C 2019, 7, 2172.

[11]

a) Y. Cho, K. Yook, J. Lee, Adv. Mater. 2014, 26, 6642; b) Y. Wada, K. Shizu, S. Kubo, K. Suzuki, H. Tanaka, C. Adachi, H. Kaji, Appl. Phys. Lett. 2015, 107, 18330.

[12]

a) A. E. Nikolaenko, M. Cass, F. Bourcet, D. Mohamad, M. Roberts, Adv. Mater. 2015, 27, 7236; b) J. Luo, G. Xie, S. Gong, T. Chen, C. Yang, Chem. Commun. 2016, 52, 2292; c) Z. Ren, R. S. Nobuyasu, F. B. Dias, A. P. Monkman, S. Yan, M. R. Bryce, Macromolecules 2016, 49, 5452; d) S. Lee, T. Yasuda, H. Komiyama, J. Lee, C. Adachi, Adv. Mater. 2016, 28, 4019; e) P. Khammultri, W. Kitisriworaphan, P. Chasing, S. Namuangruk, T. Sudyoadsuk, V. Promarak, Polym. Chem. 2021, 12, 1030; f) T. Jiang, Y. Liu, Z. Ren, S. Yan, Polym. Chem. 2020, 11, 1555; g) Shao S, Wang L. Aggregate 2020, 1, 45.

[13]

a) K. Albrecht, K. Matsuoka, K. Fujita, K. Yamamoto, Angew. Chem. Int. Ed. 2015, 54, 5677; b) Y. Li, G. Xie, S. Gong, K. Wu, C. Yang, Chem. Sci. 2016, 7, 5441; c) J. Luo, S. Gong, Y. Gu, T. Chen, Y. Li, C. Zhong, G. Xie, C. Yang, J. Mater. Chem. C 2016, 4, 2442; d) X. Wang, J. Hu, J. Lv, Q. Yang, H. Tian, S. Shao, L. Wang, X. Jing, F. Wang, Angew. Chem. Int. Ed. 2021, 60, 16585.

[14]

a) D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, Polym. J. 1985, 17, 117; b) D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev. 2010, 110, 1857.

[15]

a) A. W. Freeman, S. C. Koene, P. R. L. Malenfant, M. E. Thompson, J. M. J. Fréchet, J. Am. Chem. Soc. 2000, 122, 12385; b) P. L. Burn, S.-C. Lo, I. D. W. Samuel, Adv. Mater. 2007, 19, 1675; c) T. Qin, G. Zhou, H. Scheiber, R. E. Bauer, M. Baumgarten, C. E. Anson, E. J. W. List, K. Müllen, Angew. Chem. 2008, 120, 8416.

[16]

a) Q. Zhang, Y. F. Hu, Y. X. Cheng, G. P. Su, D. G. Ma, L. X. Wang, X. B. Jing, F. S. Wang, Synth. Met. 2003, 137, 1111; b) P. Moonsin, N. Prachumrak, R. Rattanawan, T. Keawin, S. Jungsuttiwong, T. Sudyoadsuk, V. Promarak, Chem. Commun. 2012, 48, 3382; c) K. Albrecht, Y. Kasai, A. Kimoto, K. Yamamoto, Macromolecules 2008, 41, 3793.

[17]

a) J. Li, T. Zhang, Y. Liang, R. Yang, Adv. Funct. Mater. 2012, 23, 619; b) K. Albrecht, K. Matsuoka, K. Fujita, K. Yamamoto, Mater. Chem. Front. 2018, 2, 1097.

[18]

a) K. Albrecht, Y. Kasai, K. Yamamoto, J. Inorg. Organomet. Polym. 2008, 19, 118; b) S. Gambino, S. G. Stevenson, K. A. Knights, P. L. Burn, I. D. W. Samuel, Adv. Funct. Mater. 2009, 19, 317.

[19]

a) K. Albrecht, K. Yamamoto, J. Am. Chem. Soc. 2009, 131, 2244; b) N. D. McClenaghan, R. Passalacqua, F. Loiseau, S. Campagna, B. Verheyde, A. Hameurlaine, W. Dehaen, J. Am. Chem. Soc. 2003, 125, 5356; c) K. Mutkins, S. S. Y. Chen, A. Pivrikas, M. Aljada, P. L. Burn, P. Meredith, B. J. Powell, Polym. Chem. 2013, 4, 916; d) K. Albrecht, R. Pernites, M. Felipe, R. C. Advincula, K. Yamamoto, Macromolecules 2012, 45, 1288.

[20]

a) X. Ban, W. Jiang, K. Sun, B. Lin, Y. Sun, ACS Appl. Mater. Interfaces 2017, 9, 7339; b) J. Luo, S. Gong, Y. Gu, T. Chen, Y. Li, C. Zhong, G. Xie, C. Yang, J. Mater. Chem. C 2016, 4, 2442.

[21]

a) H. Tanaka, K. Shizu, H. Miyazaki, C. Adachi, Chem. Commun. 2012, 48, 11392; b) T. Serevičius, T. Nakagawa, M.-C. Kuo, S.-H. Cheng, K.-T. Wong, C.-H. Chang, R. C. Kwong, S. Xia, C. Adachi, Phys. Chem. Chem. Phys. 2013, 15, 15850; c) S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H. Miyazaki, C. Adachi, Nature Mater. 2014, 14, 330; d) D. Liu, D. Li, H. Meng, Y. Wang, L. Wu, J. Mater. Chem. C 2019, 7, 12470.

[22]

a) K. Albrecht, K. Matsuoka, D. Yokoyama, Y. Sakai, A. Nakayama, K. Fujita, K. Yamamoto, Chem. Commun. 2017, 53, 2439; b) T. Matulaitis, P. Imbrasas, N. A. Kukhta, P. Baronas, T. Bučiūnas, D. Banevičius, K. Kazlauskas, J. V. Gražulevičius, S. Juršėnas, J. Phys. Chem. C 2017, 121, 23618; c) D. Sun, E. Duda, X. Fan, R. Saxena, M. Zhang, S. Bagnich, X. Zhang, A. Köhler, E. Zysman-Colman, Adv. Mater. 2022, 34, 2110344.

[23]

a) K. Matsuoka, K. Albrecht, A. Nakayama, K. Yamamoto, K. Fujita, ACS Appl. Mater. Interfaces 2018, 10, 33343; b) X. Ban, A. Zhu, T. Zhang, Z. Tong, W. Jiang, Y. Sun, ACS Appl. Mater. Interfaces 2017, 9, 21900.

[24]

W.-L. Tsai, M.-H. Huang, W.-K. Lee, Y.-J. Hsu, K.-C. Pan, Y.-H. Huang, H.-C. Ting, M. Sarma, Y.-Y. Ho, H.-C. Hu, C.-C. Chen, M.-T. Lee, K.-T. Wong, C.-C. Wu, Chem. Commun. 2015, 51, 13662.

[25]

K. Albrecht, E. Hisamura, M. Furukori, Y. Nakayama, T. Hosokai, K. Nakao, H. Ikebe, A. Nakayama, Polym. Chem. 2022, 13, 2277.

[26]

A. Klapars, J. C. Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 7727.

[27]

M. Numata, (Idemitsu Kosan Co., Ltd.), JP. P2013-108015A, 2013.

[28]

Q. Xiang, X. Sun, G. Zhu, H. Sun, Y. Wan, Z. Si, Q. Duan, Eur. J. Inorg. Chem. 2012, 2012, 4012.

[29]

L. H. Xie, X. Y. Hou, Y. R. Hua, C. Tang, F. Liu, Q. L. Fan, W. Huang, Org. Lett. 2006, 8, 3701.

[30]

a) T. Ishizone, H. Tajima, S. Matsuoka, S. Nakahama, Tetrahedron Lett. 2001, 42, 8645; b) T. Ishizone, Kobunshi 2004, 53, 342; c) L. J. Mathias, G. L. Tullos, Polymer 1996, 37, 3771; d) D. Plaza-Lozano, B. Comesaña-Gándara, M. de la Viuda, J. G. Seong, L. Palacio, P. Prádanos, J. G. de la Campa, P. Cuadrado, Y. M. Lee, A. Hernández, C. Alvarez, A. E. Lozano, Mater. Today Commun. 2015, 5, 23.

[31]

a) J. F. Ambrose, R. F. Nelson, J. Electrochem. Soc. 1968, 115, 1159; b) J. F. Ambrose, L. L. Carpenter, R. F. Nelson, J. Electrochem. Soc. 1975, 122, 876.

[32]

C. Reichardt, Chem. Rev. 1994, 94, 2319.

[33]

K. Masui, H. Nakanotani, C. Adachi, Org. Electron. 2013, 14, 2721.

[34]

M. Furukori, Y. Nagamune, Y. Nakayama, T. Hosokai, J. Mater. Chem. C 2023, 11, 4357.

[35]

D. de Sa Pereira, D. R. Lee, N. A. Kukhta, K. H. Lee, C. L. Kim, A. S. Batsanov, J. Y. Lee, A. P. Monkman, J. Mater. Chem. C 2019, 7, 10481.

RIGHTS & PERMISSIONS

2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

189

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/