Thermally activated delayed fluorescence carbazole-triazine dendrimer with bulky substituents

Hiroki Ikebe, Kohei Nakao, Eri Hisamura, Minori Furukori, Yasuo Nakayama, Takuya Hosokai, Minlang Yang, Guanting Liu, Takuma Yasuda, Ken Albrecht

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 405. DOI: 10.1002/agt2.405
RESEARCH ARTICLE

Thermally activated delayed fluorescence carbazole-triazine dendrimer with bulky substituents

Author information +
History +

Abstract

Carbazole-triazine dendrimers with a bulky terminal substituent were synthesized, and the thermally activated delayed fluorescence (TADF) property was investigated. Compared to unsubstituted carbazole dendrimers, dendrimers with bulky terminal substituents showed comparable to better photoluminescence quantum yields (PLQY) in neat films. Phenylfluorene (PF)-substituted dendrimers showed the highest PLQY of 81%, a small ΔEst of 0.06 eV, and the fastest reverse intersystem crossing (RISC) rate of ∼1 × 105 s−1 compared to other dendrimers. Phosphorescence measurements of dendrimers and dendrons (fragments) indicate that the close proximity of the triplet energy of phenylfluorene-substituted carbazole dendrons (3LE) to that of phenylfluorene-substituted dendrimers (1CT, 3CT) contributes to RISC promotion and improves TADF efficiency. Terminal modification fine-tunes the energy level and suppresses intermolecular interactions, and this study provides a guideline for designing efficient solution-processable and non-doped TADF materials.

Keywords

dendrimer / OLED / TADF

Cite this article

Download citation ▾
Hiroki Ikebe, Kohei Nakao, Eri Hisamura, Minori Furukori, Yasuo Nakayama, Takuya Hosokai, Minlang Yang, Guanting Liu, Takuma Yasuda, Ken Albrecht. Thermally activated delayed fluorescence carbazole-triazine dendrimer with bulky substituents. Aggregate, 2024, 5(1): 405 https://doi.org/10.1002/agt2.405

References

[1]
a) C. A. Parker, C. G. Hatchard, Trans. Faraday Soc. 1961, 57, 1894; b) A. Maciejewski, M. Szymanski, R. P. Steer, J. Phys. Chem. 1986, 90, 6314; c) M. N. Berberan-Santos, J. M. M. Garcia, J. Am. Chem. Soc. 1996, 118, 9391.
CrossRef Google scholar
[2]
a) A. Endo, M. Ogasawara, A. Takahashi, D. Yokoyama, Y. Kato, C. Adachi, Adv. Mater. 2009, 21, 4802; b) J. C. Deaton, S. C. Switalski, D. Y. Kondakov, R. H. Young, T. D. Pawlik, D. J. Giesen, S. B. Harkins, A. J. M. Miller, S. F. Mickenberg, J. C. Peters, J. Am. Chem. Soc. 2010, 132, 9499; c) F. B. Dias, K. N. Bourdakos, V. Jankus, K. C. Moss, K. T. Kamtekar, V. Bhalla, J. Santos, M. R. Bryce, A. P. Monkman, Adv. Mater. 2013, 25, 3707.
CrossRef Google scholar
[3]
a) H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 2012, 492, 234; b) H. Wu, X.-C. Fan, H. Wang, F. Huang, X. Xiong, Y.-Z. Shi, K. Wang, J. Yu, X.-H. Zhang. Aggregate 2022, 4, e243.
CrossRef Google scholar
[4]
a) N. Aizawa, A. Matsumoto, T. Yasuda, Sci. Adv. 2021, 7, eabe5769; b) H. Imahori, Y. Kobori, H. Kaji, Acc. Mater. Res. 2021, 2, 501.
CrossRef Google scholar
[5]
a) R. Braveenth, H. Lee, J. D. Park, K. J. Yang, S. J. Hwang, K. R. Naveen, R. Lampande, J. H. Kwon, Adv. Funct. Mater. 2021, 31, 2105805; b) J. Han, Y. Chen, N. Li, Z. Huang, C. Yang. Aggregate 2022, 3, e182.
[6]
W. Xue, H. Yan, Y. He, L. Wu, X. Zhang, Y. Wu, J. Xu, J. He, C. Yan, H. Meng, Chem. Eur. J. 2022, 28, e202201006.
[7]
a) Y. Wada, H. Nakagawa, S. Matsumoto, Y. Wakisaka, H. Kaji, Nat. Photon. 2020, 14, 643; b) T. Hosokai, H. Matsuzaki, H. Nakanotani, K. Tokumaru, T. Tsutsui, A. Furube, K. Nasu, H. Nomura, M. Yahiro, C. Adachi, Sci. Adv. 2017, 3, e1603282.
CrossRef Google scholar
[8]
a) T. Chatterjee, K. T. Wong, Adv. Opt. Mater. 2019, 7, 1800565; b) S. Y. Byeon, D. R. Lee, K. S. Yook, J. Y. Lee, Adv. Mater. 2019, 31, 1803714; c) U. Balijapalli, M. Tanaka, M. Auffray, C. Y. Chan, Y. T. Lee, Y. Tsuchiya, H. Nakanotani, C. Adachi, ACS Appl. Mater. Interfaces 2020, 12, 9498; d) Park IS, Min H, Yasuda T. Aggregate 2021, 2, 145.
CrossRef Google scholar
[9]
a) J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature 1990, 347, 539; b) M. C. Gather, A. Köhnen, K. Meerholz, Adv. Mater. 2010, 23, 233; c) D. Di, A. S. Romanov, L. Yang, J. M. Richter, J. P. H. Rivett, S. Jones, T. H. Thomas, M. A. Jalebi, R. H. Friend, M. Linnolahti, M. Bochmann, D. Credgington, Science 2017, 356, 159; d) D. Liu, M. Zhang, W. Tian, W. Jiang, Y. Sun, Z. Zhao, B. Z. Tang, Aggregate 2022, 3, e164.
CrossRef Google scholar
[10]
M. Godumala, S. Choi, M. J. Cho, D. H. Choi, J. Mater. Chem. C 2019, 7, 2172.
CrossRef Google scholar
[11]
a) Y. Cho, K. Yook, J. Lee, Adv. Mater. 2014, 26, 6642; b) Y. Wada, K. Shizu, S. Kubo, K. Suzuki, H. Tanaka, C. Adachi, H. Kaji, Appl. Phys. Lett. 2015, 107, 18330.
CrossRef Google scholar
[12]
a) A. E. Nikolaenko, M. Cass, F. Bourcet, D. Mohamad, M. Roberts, Adv. Mater. 2015, 27, 7236; b) J. Luo, G. Xie, S. Gong, T. Chen, C. Yang, Chem. Commun. 2016, 52, 2292; c) Z. Ren, R. S. Nobuyasu, F. B. Dias, A. P. Monkman, S. Yan, M. R. Bryce, Macromolecules 2016, 49, 5452; d) S. Lee, T. Yasuda, H. Komiyama, J. Lee, C. Adachi, Adv. Mater. 2016, 28, 4019; e) P. Khammultri, W. Kitisriworaphan, P. Chasing, S. Namuangruk, T. Sudyoadsuk, V. Promarak, Polym. Chem. 2021, 12, 1030; f) T. Jiang, Y. Liu, Z. Ren, S. Yan, Polym. Chem. 2020, 11, 1555; g) Shao S, Wang L. Aggregate 2020, 1, 45.
CrossRef Google scholar
[13]
a) K. Albrecht, K. Matsuoka, K. Fujita, K. Yamamoto, Angew. Chem. Int. Ed. 2015, 54, 5677; b) Y. Li, G. Xie, S. Gong, K. Wu, C. Yang, Chem. Sci. 2016, 7, 5441; c) J. Luo, S. Gong, Y. Gu, T. Chen, Y. Li, C. Zhong, G. Xie, C. Yang, J. Mater. Chem. C 2016, 4, 2442; d) X. Wang, J. Hu, J. Lv, Q. Yang, H. Tian, S. Shao, L. Wang, X. Jing, F. Wang, Angew. Chem. Int. Ed. 2021, 60, 16585.
CrossRef Google scholar
[14]
a) D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, P. Smith, Polym. J. 1985, 17, 117; b) D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev. 2010, 110, 1857.
CrossRef Google scholar
[15]
a) A. W. Freeman, S. C. Koene, P. R. L. Malenfant, M. E. Thompson, J. M. J. Fréchet, J. Am. Chem. Soc. 2000, 122, 12385; b) P. L. Burn, S.-C. Lo, I. D. W. Samuel, Adv. Mater. 2007, 19, 1675; c) T. Qin, G. Zhou, H. Scheiber, R. E. Bauer, M. Baumgarten, C. E. Anson, E. J. W. List, K. Müllen, Angew. Chem. 2008, 120, 8416.
CrossRef Google scholar
[16]
a) Q. Zhang, Y. F. Hu, Y. X. Cheng, G. P. Su, D. G. Ma, L. X. Wang, X. B. Jing, F. S. Wang, Synth. Met. 2003, 137, 1111; b) P. Moonsin, N. Prachumrak, R. Rattanawan, T. Keawin, S. Jungsuttiwong, T. Sudyoadsuk, V. Promarak, Chem. Commun. 2012, 48, 3382; c) K. Albrecht, Y. Kasai, A. Kimoto, K. Yamamoto, Macromolecules 2008, 41, 3793.
CrossRef Google scholar
[17]
a) J. Li, T. Zhang, Y. Liang, R. Yang, Adv. Funct. Mater. 2012, 23, 619; b) K. Albrecht, K. Matsuoka, K. Fujita, K. Yamamoto, Mater. Chem. Front. 2018, 2, 1097.
CrossRef Google scholar
[18]
a) K. Albrecht, Y. Kasai, K. Yamamoto, J. Inorg. Organomet. Polym. 2008, 19, 118; b) S. Gambino, S. G. Stevenson, K. A. Knights, P. L. Burn, I. D. W. Samuel, Adv. Funct. Mater. 2009, 19, 317.
CrossRef Google scholar
[19]
a) K. Albrecht, K. Yamamoto, J. Am. Chem. Soc. 2009, 131, 2244; b) N. D. McClenaghan, R. Passalacqua, F. Loiseau, S. Campagna, B. Verheyde, A. Hameurlaine, W. Dehaen, J. Am. Chem. Soc. 2003, 125, 5356; c) K. Mutkins, S. S. Y. Chen, A. Pivrikas, M. Aljada, P. L. Burn, P. Meredith, B. J. Powell, Polym. Chem. 2013, 4, 916; d) K. Albrecht, R. Pernites, M. Felipe, R. C. Advincula, K. Yamamoto, Macromolecules 2012, 45, 1288.
CrossRef Google scholar
[20]
a) X. Ban, W. Jiang, K. Sun, B. Lin, Y. Sun, ACS Appl. Mater. Interfaces 2017, 9, 7339; b) J. Luo, S. Gong, Y. Gu, T. Chen, Y. Li, C. Zhong, G. Xie, C. Yang, J. Mater. Chem. C 2016, 4, 2442.
CrossRef Google scholar
[21]
a) H. Tanaka, K. Shizu, H. Miyazaki, C. Adachi, Chem. Commun. 2012, 48, 11392; b) T. Serevičius, T. Nakagawa, M.-C. Kuo, S.-H. Cheng, K.-T. Wong, C.-H. Chang, R. C. Kwong, S. Xia, C. Adachi, Phys. Chem. Chem. Phys. 2013, 15, 15850; c) S. Hirata, Y. Sakai, K. Masui, H. Tanaka, S. Y. Lee, H. Nomura, N. Nakamura, M. Yasumatsu, H. Nakanotani, Q. Zhang, K. Shizu, H. Miyazaki, C. Adachi, Nature Mater. 2014, 14, 330; d) D. Liu, D. Li, H. Meng, Y. Wang, L. Wu, J. Mater. Chem. C 2019, 7, 12470.
CrossRef Google scholar
[22]
a) K. Albrecht, K. Matsuoka, D. Yokoyama, Y. Sakai, A. Nakayama, K. Fujita, K. Yamamoto, Chem. Commun. 2017, 53, 2439; b) T. Matulaitis, P. Imbrasas, N. A. Kukhta, P. Baronas, T. Bučiūnas, D. Banevičius, K. Kazlauskas, J. V. Gražulevičius, S. Juršėnas, J. Phys. Chem. C 2017, 121, 23618; c) D. Sun, E. Duda, X. Fan, R. Saxena, M. Zhang, S. Bagnich, X. Zhang, A. Köhler, E. Zysman-Colman, Adv. Mater. 2022, 34, 2110344.
CrossRef Google scholar
[23]
a) K. Matsuoka, K. Albrecht, A. Nakayama, K. Yamamoto, K. Fujita, ACS Appl. Mater. Interfaces 2018, 10, 33343; b) X. Ban, A. Zhu, T. Zhang, Z. Tong, W. Jiang, Y. Sun, ACS Appl. Mater. Interfaces 2017, 9, 21900.
CrossRef Google scholar
[24]
W.-L. Tsai, M.-H. Huang, W.-K. Lee, Y.-J. Hsu, K.-C. Pan, Y.-H. Huang, H.-C. Ting, M. Sarma, Y.-Y. Ho, H.-C. Hu, C.-C. Chen, M.-T. Lee, K.-T. Wong, C.-C. Wu, Chem. Commun. 2015, 51, 13662.
CrossRef Google scholar
[25]
K. Albrecht, E. Hisamura, M. Furukori, Y. Nakayama, T. Hosokai, K. Nakao, H. Ikebe, A. Nakayama, Polym. Chem. 2022, 13, 2277.
CrossRef Google scholar
[26]
A. Klapars, J. C. Antilla, X. Huang, S. L. Buchwald, J. Am. Chem. Soc. 2001, 123, 7727.
CrossRef Google scholar
[27]
M. Numata, (Idemitsu Kosan Co., Ltd.), JP. P2013-108015A, 2013.
[28]
Q. Xiang, X. Sun, G. Zhu, H. Sun, Y. Wan, Z. Si, Q. Duan, Eur. J. Inorg. Chem. 2012, 2012, 4012.
CrossRef Google scholar
[29]
L. H. Xie, X. Y. Hou, Y. R. Hua, C. Tang, F. Liu, Q. L. Fan, W. Huang, Org. Lett. 2006, 8, 3701.
[30]
a) T. Ishizone, H. Tajima, S. Matsuoka, S. Nakahama, Tetrahedron Lett. 2001, 42, 8645; b) T. Ishizone, Kobunshi 2004, 53, 342; c) L. J. Mathias, G. L. Tullos, Polymer 1996, 37, 3771; d) D. Plaza-Lozano, B. Comesaña-Gándara, M. de la Viuda, J. G. Seong, L. Palacio, P. Prádanos, J. G. de la Campa, P. Cuadrado, Y. M. Lee, A. Hernández, C. Alvarez, A. E. Lozano, Mater. Today Commun. 2015, 5, 23.
CrossRef Google scholar
[31]
a) J. F. Ambrose, R. F. Nelson, J. Electrochem. Soc. 1968, 115, 1159; b) J. F. Ambrose, L. L. Carpenter, R. F. Nelson, J. Electrochem. Soc. 1975, 122, 876.
CrossRef Google scholar
[32]
C. Reichardt, Chem. Rev. 1994, 94, 2319.
CrossRef Google scholar
[33]
K. Masui, H. Nakanotani, C. Adachi, Org. Electron. 2013, 14, 2721.
CrossRef Google scholar
[34]
M. Furukori, Y. Nagamune, Y. Nakayama, T. Hosokai, J. Mater. Chem. C 2023, 11, 4357.
CrossRef Google scholar
[35]
D. de Sa Pereira, D. R. Lee, N. A. Kukhta, K. H. Lee, C. L. Kim, A. S. Batsanov, J. Y. Lee, A. P. Monkman, J. Mater. Chem. C 2019, 7, 10481.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/