Ligand-dependent aggregation-enhanced photoacoustic of atomically precise metal nanocluster

Changlin Zhou, Meng Wang, Qiaofeng Yao, Yu Zhou, Chuantao Hou, Jianfei Xia, Zonghua Wang, Jishi Chen, Jianping Xie

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 401. DOI: 10.1002/agt2.401
RESEARCH ARTICLE

Ligand-dependent aggregation-enhanced photoacoustic of atomically precise metal nanocluster

Author information +
History +

Abstract

Atomically precise metal nanoclusters (MNCs), as a potential type of photoacoustic (PA) contrast agent, are limited in application due to their low PA conversion efficiency (PACE). Here, with hydrophilic Au25SR18 (SR = thiolate) as model NCs, we present a result that weakly polar solvent induces aggregation, which effectively enhances PA intensity and PACE. The PA intensity and PACE are highly dependent on the degree of aggregation, while the aggregation-enhanced PA intensity (AEPA) positively correlates to the protected ligands. Such an AEPA phenomenon indicates that aggregation actually accelerates the intramolecular motion of Au NCs, and enlarges the proportion of excited state energy dissipated through vibrational relaxation. This result conflicts with the restriction of intramolecular motion mechanism of aggregation-induced emission. Further experiments show that the increased energy of AEPA originates from the aggregation inhibiting the intermolecular energy transfer from excited Au NCs to their surrounding medium molecules, including solvent molecule and dissolved oxygen, rather than restricting radiative relaxations. This study develops a new strategy for enhancing the PA intensity of Au NCs, and contributes to a deeper understanding of the origin of the PA signal and the excited state energy dissipation processes for MNCs.

Keywords

aggregation-enhanced photoacoustic / gold nanocluster / intermolecular excited state energy transfer / intramolecular motion / ligand effect

Cite this article

Download citation ▾
Changlin Zhou, Meng Wang, Qiaofeng Yao, Yu Zhou, Chuantao Hou, Jianfei Xia, Zonghua Wang, Jishi Chen, Jianping Xie. Ligand-dependent aggregation-enhanced photoacoustic of atomically precise metal nanocluster. Aggregate, 2024, 5(1): 401 https://doi.org/10.1002/agt2.401

References

[1]
a)R. Jin, G. Li, S. Sharma, Y. Li, X. Du, Chem. Rev. 2021, 121, 567. b)Y. Du, H. Sheng, D. Astruc, M. Zhu, Chem. Rev. 2020, 120, 526. c)H. Zhu, X. Yuan, Q. Yao, J. Xie, Nano Energy 2021, 88, 106306.
CrossRef Google scholar
[2]
a)M. F. Matus, H. Häkkinen, Small 2021, 17, 2005499. b)B. Du, X. Jiang, A. Das, Q. Zhou, M. Yu, R. Jin, J. Zheng, Nat. Nano. 2017, 12, 1096. c)X. Jiang, B. Du, J. Zheng, Nat. Nano. 2019, 14, 874. d)M.-M. Xu, T.-T. Jia, B. Li, W. Ma, X. Chen, X. Zhao, S.-Q. Zang, Chem. Commun. 2020, 56, 8766. e)X. Song, W. Zhu, X. Ge, R. Li, S. Li, X. Chen, J. Song, J. Xie, X. Chen, H. Yang, Angew. Chem. Int. Ed. 2021, 60, 1306. f)X. Ma, G. Ma, L. Qin, G. Chen, S. Chen, Z. Tang, Sci. China Chem. 2020, 63, 1777. g)S. Zhang, Y. Li, L. Feng, Q. Xue, Z. Gao, C. Tung, D. Sun, Nano Res. 2021, 14, 3343. h)W.-D. Si, C. Zhang, M. Zhou, W.-D. Tian, Z. Wang, Q. Hu, K.-P. Song, L. Feng, X.-q. Huang, Z.-Y. Gao, C.-H. Tung, D. Sun, Sci. Adv. 2023, 9, eadg3587.
CrossRef Google scholar
[3]
O. Varnavski, G. Ramakrishna, J. Kim, D. Lee, T. Goodson, ACS Nano 2010, 4, 3406.
CrossRef Google scholar
[4]
a)X. Jiang, B. Du, S. Tang, J.-T. Hsieh, J. Zheng, Angew. Chem. Int. Ed. 2019, 58, 5994. b)G. Yang, X. Mu, X. Pan, Y. Tang, Q.-F. Yao, Y. Wang, F. Jiang, F. Du, J. Xie, X. Zhou, X. Yuan, Chem. Sci. 2023, 14, 4308.
CrossRef Google scholar
[5]
a)Z. Luo, X. Yuan, Y. Yu, Q. Zhang, D. T. Leong, J. Y. Lee, J. Xie, J. Am. Chem. Soc. 2012, 134, 16662. b)Z. Wu, Q. Yao, O. J. H. Chai, N. Ding, W. Xu, S.-Q. Zang, J. Xie, Angew. Chem. Int. Ed. 2020, 59, 9934. c)Z. Xie, P. Sun, Z. Wang, H. Li, L. Yu, D. Sun, M. Chen, Y. Bi, X. Xin, J. Hao, Angew. Chem. Int. Ed. 2020, 59, 9922. d)M. Sugiuchi, J. Maeba, N. Okubo, M. Iwamura, K. Nozaki, K. Konishi, J. Am. Chem. Soc. 2017, 139, 17731. e)M. Zhu, Q. Yao, Z. Liu, J. Liu, M. Liu, M. Long, J. Xie, J. Phys. Chem. Lett. 2022, 13, 7722. f)Z. Yin, Z. Wang, X. Dai, N. Liu, S. Wang, G. Li, F. Du, X. Yuan, ACS Sustainable Chem. Eng. 2020, 8, 15336. g)M.-M. Zhang, K. Li, S.-Q. Zang, Adv. Optical Mater. 2020, 8, 1902152. h)X. Kang, S. Wang, M. Zhu, Chem. Sci. 2018, 9, 3062. i)T. Chen, S. Yang, J. Chai, Y. Song, J. Fan, B. Rao, H. Sheng, H. Yu, M. Zhu, Sci. Adv. 2017, 3, e1700956. j)W.-D. Si, K. Sheng, C. Zhang, Z. Wang, S.-S. Zhang, J.-M. Dou, L. Feng, Z.-Y. Gao, C.-H. Tung, D. Sun, Chem. Sci. 2022, 13, 10523.
CrossRef Google scholar
[6]
a)K. Pyo, H. Xu, S. M. Han, S. Saxena, S. Y. Yoon, G. Wiederrecht, G. Ramakrishna, D. Lee, Small 2021, 17, 2004836. b)P. An, R. Anumula, H. Wu, J. Han, Z. Luo, Nanoscale 2018, 10, 16787.
CrossRef Google scholar
[7]
a)M. Swierczewski, F. Cousin, E. Banach, A. Rosspeintner, L. M. L. Daku, A. Ziarati, R. Kazan, G. Jeschke, R. Azoulay, L.-T. Lee, T. Bürgi, Angew. Chem. Int. Ed. 2023, 62, e202215746. b)M. Reato, T. Dainese, S. Antonello, F. Maran, Chem. Mater. 2021, 33, 4177. c)E. Selenius, S. Malola, M. Kuisma, H. Häkkinen, J. Phys. Chem. C 2020, 124, 12645. d)S. Wang, L. Tang, B. Cai, Z. Yin, Y. Li, L. Xiong, X. Kang, J. Xuan, Y. Pei, M. Zhu, J. Am. Chem. Soc. 2022, 144, 3787. e)H. Kawasaki, S. Kumar, G. Li, C. Zeng, D. R. Kauffman, J. Yoshimoto, Y. Iwasaki, R. Jin, Chem. Mater. 2014, 26, 2777. f)D. C. Lim, J. H. Jeong, K. Pyo, D. Lee, J. Heo, J. W. Choi, C.-L. Lee, J. Seo, S. Kim, S. Cho, Nano Energy 2018, 48, 518.
CrossRef Google scholar
[8]
K. Pyo, V. D. Thanthirige, K. Kwak, P. Pandurangan, G. Ramakrishna, D. Lee, J. Am. Chem. Soc. 2015, 137, 8244.
CrossRef Google scholar
[9]
a)S. Suzuki, K. Imamura, K. Fujii, Y. Kimura, Y. Matano, M. Higashi, H. Sato, J. Mol. Liq. 2023, 382, 121934. b)Z. Wang, A. Meijerink, J. Phys. Chem. C 2018, 122, 26298. c)J. Maillard, K. Klehs, C. Rumble, E. Vauthey, M. Heilemann, A. Fürstenberg, Chem. Sci. 2021, 12, 1352.
CrossRef Google scholar
[10]
a)Y. Li, M. Zhou, Y. Song, T. Higaki, H. Wang, R. Jin, Nature 2021, 594, 380. b)A. Das, T. Li, K. Nobusada, Q. Zeng, N. L. Rosi, R. Jin, J. Am. Chem. Soc. 2012, 134, 20286. c)Y. Zhou, L. Liao, S. Zhuang, Y. Zhao, Z. Gan, W. Gu, J. Li, H. Deng, N. Xia, Z.Wu, Angew. Chem. Int. Ed. 2021, 60, 8668. d)D. Crasto, G. Barcaro, M. Stener, L. Sementa, A. Fortunelli, A. Dass, J. Am. Chem. Soc. 2014, 136, 14933.
CrossRef Google scholar
[11]
a)Y. Cao, S. Malola, M. F. Matus, T. Chen, Q. Yao, R. Shi, H. Häkkinen, J. Xie, Chem 2021, 7, 2227. b)N. Xia, J. Yuan, L. Liao, W. Zhang, J. Li, H. Deng, J. Yang, Z. Wu, J. Am. Chem. Soc. 2020, 142, 12140. c)Z.-J. Guan, F. Hu, J.-J. Li, Z.-R. Wen, Y.-M. Lin, Q.-M. Wang, J. Am. Chem. Soc. 2020, 142, 2995. d)X. Liu, W. W. Xu, X. Huang, E. Wang, X. Cai, Y. Zhao, J. Li, M. Xiao, C. Zhang, Y. Gao, W. Ding, Y. Zhu, Nat. Commun. 2020, 11, 3349.
CrossRef Google scholar
[12]
a)S. Wang, X. Meng, A. Das, T. Li, Y. Song, T. Cao, X. Zhu, M. Zhu, R. Jin, Angew. Chem. Int. Ed. 2014, 53, 2376. b)S. Takano, H. Hirai, T. Nakashima, T. Iwasa, T. Taketsugu, T. Tsukuda, J. Am. Chem. Soc. 2021, 143, 10560. c)M. S. Bootharaju, C. P. Joshi, M. R. Parida, O. F. Mohammed, O. M. Bakr, Angew. Chem. Int. Ed. 2016, 55, 922. d)W. Fei, S. Antonello, T. Dainese, A. Dolmella, M. Lahtinen, K. Rissanen, A. Venzo, F. Maran, J. Am. Chem. Soc. 2019, 141, 16033.
CrossRef Google scholar
[13]
a)M. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, R. Jin, J. Am. Chem. Soc. 2008, 130, 5883. b)M. W. Heaven, A. Dass, P. S. White, K. M. Holt, R. W. Murray, J. Am. Chem. Soc. 2008, 130, 3754.
CrossRef Google scholar
[14]
X. Yuan, B. Zhang, Z. Luo, Q. Yao, D. T. Leong, N. Yan, J. Xie, Angew. Chem. Int. Ed. 2014, 53, 4623.
CrossRef Google scholar
[15]
S. Takano, S. Yamazoe, K. Koyasu, T. Tsukuda, J. Am. Chem. Soc. 2015, 137, 7027.
CrossRef Google scholar
[16]
T. Lee, L. J. Guo, Adv. Optical Mater. 2017, 5, 1600421.
[17]
H. W. Baac, J. G. Ok, H. J. Park, T. Ling, S.-L. Chen, A. J. Hart, L. J. Guo, Appl. Phys. Lett. 2010, 97, 234104.
[18]
Z. Luo, V. Nachammai, B. Zhang, N. Yan, D. T. Leong, D.-E. Jiang, J. Xie, J. Am. Chem. Soc. 2014, 136, 10577.
CrossRef Google scholar
[19]
A. T. Rad, Y. Bao, H.-S. Jang, Y. Xia, H. Sharma, E. E. Dormidontova, J. Zhao, J. Arora, V. T. John, B. Z. Tang, T. Dainese, A. Hariri, J. V. Jokerst, F. Maran, M.-P. Nieh, Adv. Funct. Mater. 2021, 31, 2009750.
[20]
M. Zhou, Y. Song, J. Phys. Chem. Lett. 2021, 12, 1514.
CrossRef Google scholar
[21]
S. Antonello, G. Arrigoni, T. Dainese, M. De Nardi, G. Parisio, L. Perotti, A. Rene, A. Venzo, F. Maran, ACS Nano 2014, 8, 2788.
CrossRef Google scholar
[22]
X. Fang, Q. Shang, Y. Wang, L. Jiao, T. Yao, Y. Li, Q. Zhang, Y. Luo, H.-L. Jiang, Adv. Mater. 2018, 30, 1705112.
[23]
a)F. Messina, A. M El-Zohry, O. F. Mohammed, M. Chergui, J. Phys. Chem. B 2012, 116, 10730. b)R. C. Benson, H. A. Kues, Phys. Med. Biol. 1978, 23, 159.
CrossRef Google scholar
[24]
S. A. Shchukarev, T. A. Tolmacheva, J. Struct. Chem. 1968, 9, 16.
CrossRef Google scholar
[25]
M. Afri, A. A. Frimer, Y. Cohen, Chem. Phys. Lipids 2004, 131, 123.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/