D-type neuropeptide decorated AIEgen/RENP hybrid nanoprobes with light-driven ROS generation ability for NIR-II fluorescence imaging-guided through-skull photodynamic therapy of gliomas

Xuelu He, Yuan Luo, Yanying Li, Yuanbo Pan, Ryan T. K. Kwok, Lulu He, Xiaolin Duan, Pengfei Zhang, Aiguo Wu, Ben Zhong Tang, Juan Li

PDF
Aggregate ›› 2024, Vol. 5 ›› Issue (1) : 396. DOI: 10.1002/agt2.396
RESEARCH ARTICLE

D-type neuropeptide decorated AIEgen/RENP hybrid nanoprobes with light-driven ROS generation ability for NIR-II fluorescence imaging-guided through-skull photodynamic therapy of gliomas

Author information +
History +

Abstract

Glioma is one of the most common malignant tumors of the central nervous system, leading high mortality rates in human. Aggregation-induced emission (AIE) photosensitizers-based photodynamic therapy (PDT) has emerged as a promising therapeutic strategy for least-invasive treatment of glioma, which involves local irradiation of the tumor using an external near-infrared (NIR) laser. Unfortunately, most AIE photosensitizers suffered from poorly penetration of the visible light excitation, bad spatiotemporal resolution in deep tissues and low efficient blood-brain barrier (BBB) crossing ability, which greatly limited the clinical practice of AIE photosensitizers for especially deep-seated brain tumor treatment. In this work, we developed a multifunctional NIR-driven theranostic agent through hybrid of AIE photosensitizers TIND with rare-earth doping nanoparticles (RENPs) NaGdF4:Nd/Yb/Tm with up/down dual-mode conversion luminescence. The theranostic agent was further decorated with D-type neuropeptide DNPY for crossing BBB and targeting glioma. Under the 808-nm light irradiation, the down-conversion NIR-II luminescence could indicate the position glioma and the upconversion NIR-I luminescence could trigger the AIE photosensitizers producing reactive oxygen species to inhibit orthotopic glioma tumor growth in situ. These results demonstrate that the integration of Dtype neuropeptide, AIE photosensitizers and RENPs could be promising candidates for in vivo NIR-II fluorescence image-guided through-skull PDT treatments of brain tumors.

Keywords

aggregation-induced emission / D-type neuropeptide / glioma / photodynamic therapy / rare-earth doping nanoparticles

Cite this article

Download citation ▾
Xuelu He, Yuan Luo, Yanying Li, Yuanbo Pan, Ryan T. K. Kwok, Lulu He, Xiaolin Duan, Pengfei Zhang, Aiguo Wu, Ben Zhong Tang, Juan Li. D-type neuropeptide decorated AIEgen/RENP hybrid nanoprobes with light-driven ROS generation ability for NIR-II fluorescence imaging-guided through-skull photodynamic therapy of gliomas. Aggregate, 2024, 5(1): 396 https://doi.org/10.1002/agt2.396

References

[1]
J. T. Huse, E. C. Holland, Nat. Rev. Cancer 2010, 10, 319.
CrossRef Google scholar
[2]
D. N. Louis, A. Perry, P. Wesseling, D. J. Brat, I. A. Cree, D. Figarella-Branger, C. Hawkins, H. K. Ng, S. M. Pfister, G. Reifenberger, R. Soffietti, A. von Deimling, D. W. Ellison, Neuro-Oncology 2021, 23, 1231.
CrossRef Google scholar
[3]
R. L. Siegel, K. D. Miller, H. E. Fuchs, A. Jemal, CA Cancer J. Clin. 2022, 72, 7.
CrossRef Google scholar
[4]
N. Sanai, M. S. Berger, Neurosurgery 2008, 62, 753.
CrossRef Google scholar
[5]
H. S. Friedman, T. Kerby, H. Calvert, Clin. Cancer Res. 2000, 6, 2585.
[6]
A. Omuro, L. M. DeAngelis, JAMA 2013, 310, 1842.
CrossRef Google scholar
[7]
N. A. O Bush, S. M. Chang, M. S. Berger, Neurosurg. Rev. 2017, 40, 1.
[8]
K. J. Langen, N. Galldiks, E. Hattingen, N. J. Shah, Nat. Rev. Neurosci. 2017, 13, 279.
CrossRef Google scholar
[9]
X. Li, J. F. Lovell, J. Yoon, X. Chen, Nat. Rev. Clin. Oncol. 2020, 17, 657.
CrossRef Google scholar
[10]
J. Chen, T. Fan, Z. Xie, Q. Zeng, P. Xue, T. Zheng, Y. Chen, X. Luo, H. Zhang, Biomaterials 2020, 237, 119827.
CrossRef Google scholar
[11]
W. Fan, P. Huang, X. Chen, Chem. Soc. Rev. 2016, 45, 6488.
CrossRef Google scholar
[12]
J. Ni, Y. Wang, H. Zhang, J. Z. Sun, B. Z. Tang, Molecules 2021, 26, 268.
CrossRef Google scholar
[13]
S. Wang, X. Wang, L. Yu, M. Sun, Photodiagnosis Photodyn. Ther. 2021, 34, 102254.
CrossRef Google scholar
[14]
S. D. Xu, Y. Y. Yuan, X. L. Cai, C. J. Zhang, F. Hu, J. Liang, G. X. Zhang, D. Q. Zhang, B. Liu, Chem. Sci. 2015, 6, 5824.
CrossRef Google scholar
[15]
X. Z. Zhao, J. P. Liu, J. L. Fan, H. Chao, X. J. Peng, Chem. Soc. Rev. 2021, 50, 4185.
CrossRef Google scholar
[16]
K. Wanderi, Z. Cui, Exploration 2022, 2, 20210097.
[17]
J. Lv, Y. Xing, X. Li, X. Du, Exploration 2022, 2, 20210162.
[18]
D. Mao, F. Hu, Z. G. Yi, K. Kenry, S. D. Xu, S. Q. Yan, Z. C. Luo, W. B. Wu, Z. H. Wang, D. L. Kong, X. G. Liu, B. Liu, Sci. Adv. 2020, 6, eabb2712.
[19]
Y. Guan, H. G. Lu, W. Li, Y. D. Zheng, Z. Jiang, J. L. Zou, H. Gao, ACS Appl. Mater. Interfaces 2017, 9, 26731.
CrossRef Google scholar
[20]
Q. Xin, H. Ma, H. Wang, X. Zhang, Exploration 2023, 3, 20210473.
[21]
F. Li, Y. Du, J. Liu, H. Sun, J. Wang, R. Li, D. Kim, T. Hyeon, D. Ling, Adv. Mater. 2018, 30, 1802808.
[22]
G. Jin, R. He, Q. Liu, M. Lin, Y. Dong, K. Li, B. Z. Tang, B. Liu, F. Xu, Theranostics 2019, 9, 246.
CrossRef Google scholar
[23]
P. L. Kubben, K. J. ter Meulen, O. Schijns, M. P. ter Laak-Poort, J. J. van Overbeeke, H. van Santbrink, Lancet Oncol. 2011, 12, 1062.
CrossRef Google scholar
[24]
W. Chen, J. Nucl. Med. 2007, 48, 1468.
[25]
P. Beard, Interface Focus 2011, 1, 602.
CrossRef Google scholar
[26]
L. Z. Zhao, J. Y. Zhu, Y. J. Cheng, Z. J. Xiong, Y. Q. Tang, L. L. Guo, X. Y. Shi, J. H. Zhao, ACS Appl. Mater. Interfaces 2015, 7, 19798.
CrossRef Google scholar
[27]
Y. Wu, F. Zhang, View 2020, 1, 20200068.
[28]
Z. Hu, C. Fang, B. Li, Z. Zhang, C. Cao, M. Cai, S. Su, X. Sun, X. Shi, C. Li, T. Zhou, Y. Zhang, C. Chi, P. He, X. Xia, Y. Chen, S. S. Gambhir, Z. Cheng, J. Tian, Nat. Biomed. Eng. 2020, 4, 259.
CrossRef Google scholar
[29]
F. Wang, H. Wan, Z. Ma, Y. Zhong, Q. Sun, Y. Tian, L. Qu, H. Du, M. Zhang, L. Li, H. Ma, J. Luo, Y. Liang, W. J. Li, G. Hong, L. Liu, H. Dai, Nat. Methods 2019, 16, 545.
CrossRef Google scholar
[30]
S. Zhu, R. Tian, A. L. Antaris, X. Chen, H. Dai, Adv. Mater. 2019, 31, 1900321.
[31]
Y. Zhong, Z. Ma, S. Zhu, J. Yue, M. Zhang, A. L. Antaris, J. Yuan, R. Cui, H. Wan, Y. Zhou, W. Wang, N. F. Huang, J. Luo, Z. Hu, H. Dai, Nat. Commun. 2017, 8, 737.
[32]
Y. Zhong, Z. Ma, F. Wang, X. Wang, Y. Yang, Y. Liu, X. Zhao, J. Li, H. Du, M. Zhang, Q. Cui, S. Zhu, Q. Sun, H. Wan, Y. Tian, Q. Liu, W. Wang, K. C. Garcia, H. Dai, Nat. Biotech. 2019, 37, 1322.
CrossRef Google scholar
[33]
H. Li, X. Wang, X. Li, S. Zeng, G. Chen, Chem. Mater. 2020, 32, 3365.
CrossRef Google scholar
[34]
L. Youbin, M. Jiang, Z. Xue, S. Zeng, Theranostics 2020, 10, 6875.
CrossRef Google scholar
[35]
R. Daneman, Ann. Neurol. 2012, 72, 648.
CrossRef Google scholar
[36]
Y. Chen, L. Liu, Adv. Drug Delivery Rev. 2012, 64, 640.
CrossRef Google scholar
[37]
X. Wei, C. Zhan, Q. Shen, W. Fu, C. Xie, J. Gao, C. Peng, P. Zheng, W. Lu, Angew. Chem. Int. Ed. 2015, 54, 3023.
CrossRef Google scholar
[38]
Y. Li, Y. Pan, Y. Wang, Z. Jiang, O. U. Akakuru, M. Li, X. Zhang, B. Yuan, J. Xing, L. Luo, D. Larhammar, A. Wu, J. Li, Nano Today 2022, 44, 101465.
CrossRef Google scholar
[39]
Q. Chen, C. Wang, L. Cheng, W. W. He, Z. Cheng, Z. Liu, Biomaterials 2014, 35, 2915.
CrossRef Google scholar
[40]
A. Douplik, G. Saiko, I. Schelkanova, V. V. Tuchin, Lasers for Medical Applications, 2013, Sawston, UK: Woodhead Publishing.
[41]
X. Xu, G. Deng, Z. Sun, Y. Luo, J. Liu, X. Yu, Y. Zhao, P. Gong, G. Liu, P. Zhang, F. Pan, L. Cai, B. Z. Tang, Adv. Mater. 2021, 33, 2102322.

RIGHTS & PERMISSIONS

2023 2023 The Authors. Aggregate published by SCUT, AIEI, and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/