Plasticity of bone marrow stem cells: involvement of Flk-1+ cells in skin chimerization and differentiation
A. V. Volkov
Genes & Cells ›› : 11 -13.
Plasticity of bone marrow stem cells: involvement of Flk-1+ cells in skin chimerization and differentiation
| [1] |
Korbling M. et al. Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells. N Engl J Med 2002; 46: 738. |
| [2] |
Krause D.S. et al. Multi-organ, multilineage engraftment by a single bone marrow-derived stem cell. Cell 2001; 105: 369. |
| [3] |
Hematti P et al. Absence of donor-derived keratinocyte stem cells in skin tissues cultured from patients after mobilized peripheral blood hematopoietic stem cell transplantation. Exp Hematol 2002; 30: 943. |
| [4] |
Badiavas E.V. et al. Participation of bone marrow derived cells in cutaneous wound healing. J Cell Physiol 2003; 196; 2: 245-50. |
| [5] |
Brittan M. Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion. J Pathol 2005; 205; 1: 1-13. |
| [6] |
Borue X et al. Bone marrow-derived cells contribute to epithelial engraftment during wound healing. Am J Pathol 2004; 165; 5: 1767-72. |
| [7] |
Fathke C. et al. Contribution of bone marrow-derived cells to skin: collagen deposition and wound repair. Stem Cells 2004; 22; 5: 812-22. |
| [8] |
Ai G. et al. The experimental study of bone marrow mesenchymal stem cells on the repair of skin wound combined with local radiation injury. Zhonghua Yi Xue Za Zhi 2002; 82; 23: 1632-36. |
| [9] |
Satoh H. et al. Transplanted mesenchymal stem cells are effective for skin regeneration in acute cutaneous wounds. Cell Transplant 2004; 13; 4: 405-12. |
| [10] |
Шумаков В.И. и др. Сравнительная оценка эффективности применения аллогенных эмбриональных фибробластов и мезенхимальных стволовых клеток костного мозга для терапии глубоких ожоговых ран. Вестник ТиИО 2002; 4: 7-11. |
| [11] |
Achen M.G. et al. Vascular endothelial growth factor D (VEGF-D) is aligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). PNAS 1998; 95; 2: 548-53. |
| [12] |
Chiang M.K., Flanagan J.G. Interactions between the Flk-1 receptor, vascular endothelial growth factor, and cell surface proteoglycan identified with a soluble receptor reagent. Growth Factors 1995; 12; 1: 1-10. |
| [13] |
Yamashita J. et al. Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 2000; 408; 6808: 92-6. |
| [14] |
Fang B. et al. Multipotency of Flk1+CD34- progenitors derived from human fetal bone marrow. J Lab Clin Med 2004; 143: 4. |
| [15] |
Deng W. et al. Allogeneic bone marrow-derived flk-1+Sca-1- |
| [16] |
mesenchymal stem cells leads to stable mixed chimerism and donorspecific tolerance. Exp Hematol 2004; 32; 9: 861-7. |
| [17] |
Fang B., Shi M., Liao L. et al. Systemic infusion of FLK1+ mesenchymal stem cells ameliorate carbon tetrachloride-induced liver fibrosis in mice. Transplantation 2004; 78: 83-8. |
| [18] |
Miyagi T. et al. Flk-1+ cells derived from mouse embryonic stem cells reconstitute hematopoiesis in vivo in SCID mice. Exp Hematol 2002; 30: 1444. |
Eco-Vector
/
| 〈 |
|
〉 |