Changing immunity and apoptosis in animals with carcinosarcoma Walker 256 after exposure to whole body hyperthermia (43,5°C)
A. V. Efremov , M. E. Tuleutayev , I. D. Safronov , E. N. Samsonova , I. A. Krivoshapkin , D. L. Kolodin , E. V. Ovsyanko
Bulletin of the Russian Military Medical Academy ›› 2017, Vol. 19 ›› Issue (1) : 93 -96.
Changing immunity and apoptosis in animals with carcinosarcoma Walker 256 after exposure to whole body hyperthermia (43,5°C)
The dynamics of immune parameters changes and the apoptosis in animals with carcinosarcoma Walker 256 after exposure to whole body hyperthermia (43,5°C) is analyzed. It was found that the features of immunomodulatory and apoptosis modulatory effects of hyperthermia (43,5°C) in animals with tumors are as follows: the effect of hyperthermia is manifested by increasing number of of lymphocytes (CD3+, CD4+, CD8+ and CD20+) on day 7 and decreasing to 14 th day of the experiment. Against the backdrop of a temporary increase of lymphocytes Th 1-type notes a persistent increase of interferon-γ, which is a reflection of the activity of the cellular immune reactions of the body in response to hyperthermia. Furthermore, it was found the increasing of expression levels of pro-apoptotic protein Bad, Bax and decreasing of level of expression of the protein Bcl-2 anti-apoptotic in posthyperthermal period. For example, protein expression indicators in Bad carcinosarcoma Walker 256 cells at the 7th and 14th day posthyperthermal period were significantly (p<0,05) higher, respectively, 2,05 and 2,15 times as compared with the initial state. The expression of Bax protein level was also higher than the corresponding figure before the session of hyperthermia (43,5°C), on the 7th and 14th day in 3,52 and 1,69 times, respectively (p<0,05). We assume that hyperthermia as the method that is not related to the direct thermal damage to the tumor tissue is capable to provide immunomodulatory and apoptosis modulatory effects.
Walker carcinosarcoma 256 / immunity / apoptosis / total hyperthermia / immunomodulatory and apoptosis modulatory effects of hyperthermia / posthyperthermal period / pro-apoptotic protein / tumor-bearing animals
| [1] |
Владимирская, Е.Б. Апоптоз и его роль в развитии опухолевого роста / Е.Б. Владимирская, А.А. Масчан, А.Г. Румянцев // Гематол. трансфузиол. – 1997. – № 5. – С. 4–9. |
| [2] |
Гланц, С. Медико-биологическая статистика / С. Гланц. – М., 1999. – 275 с. |
| [3] |
Ефремов, А.В. Патент 2165105 Российская Федерация. Способ экспериментального моделирования общей гипертермии у мелких лабораторных животных / А.В. Ефремов [и др.] // Опубликовано 12.10.2001. |
| [4] |
Курпешев, О.К. Гипертермические методы лечения / О.К. Курпешев // Онкология: национальное руководство. – М.: ГЕОТАР-Медиа, 2008. – С. 438–447. |
| [5] |
Северин, Е.С. Проблемы и перспективы современной противоопухолевой терапии / Е.С. Северин, А.В. Родина // Успехи биологической химии, 2006. – Т. 46. – С. 43–64. |
| [6] |
Эллиниди, В.Н. Практическая иммуногистохимия: метод. реком. / В.Н. Эллиниди, Н.В. Аникиев. Н.А. Максимов. – СПб., 2002. – 207 с. |
| [7] |
Andocs, G. Oncothermia treatment induced immunogenic cancer cell death / G. Andocs [et al.] // Oncothermia J. – 2013. – № |
| [8] |
– Р. 28–37. |
| [9] |
Andocs, G. Upregulation of heat shock proteins and the promotion of damage-associated molecular pattern signals in a colorectal cancer model by modulated electrohyperthermia / G. Andocs [et al.] // Cell Stress Chaperones. – 2015. – Vol. 20 (1). – Р. 37–46. |
| [10] |
Bos, R. CD4+ T-cell help in the tumor milieu is required for recruitment and cytolytic function of CD8+ T lymphocytes / R. Bos, L.A. Sherman // Cancer Research. – 2010. – Vol. 70 (21). – Р. 8368–8377. |
| [11] |
Chinaiyn, A.M. Molecular ordering of the cell death pathway Bcl-2 and Bcl-X(L) function upstream of the CED-3-like apoptotic proteases / A.M. Chinaiyn // J. Biol. Chem. – 1996. – Vol. 271. Р. 4573–4576. |
| [12] |
Dieing, A. Whole body hyperthermia induces apoptosis in subpopulation of blood lymphocytes / A. Dieing [et al.] // Immunobiology. – 2003. – Vol. 207 (4). – P. 265–273. |
| [13] |
Fuggetta, M.P. In vitro effect of hyperthermia on natural cellmediated cytotoxicity / M.P. Fuggetta [et al.] //Anticancer Res. – 2000. – Vol. 20 (3A). Р. 1667–1672. |
| [14] |
Kalos, M. Biomarkers in T cell therapy clinical trials / M. Kalos // J. Transl. Med. – 2011. – № 9. – Р. 138. |
| [15] |
Kearns, R.J. The effects of extracorporal whole body hyperthermia on the functional and phenotypic features of canine peripheral blood mononuclear cells (PBMC) / R.J. Kearns [et al.] // Clin. Exp. Immunol. – 1999. – Vol. 116 (1). – P. 188–192. |
| [16] |
Luchetti, F. Hyperthermia triggers apoptosis and affects cell adhesiveness in human neuroblastoma cells / R.J. Kearns [et al.] // Histol. Histopathol. – 2003. – Vol. 18 (4). – Р. 1041–1052. |
| [17] |
Meggyeshazi, N. DNA fragmentation and caspase-independent programmed cell death by modulated electrohyperthermia / N. Meggyeshazi [et al.] // Strahlenther Onkol. – 2014. – Vol. 190 (9). – Р. 815–822. |
| [18] |
Peter, M.E. The role of CD95 and CD95 ligand in cancer / M.E. Peter [et al.] // Cell Death Differ. – 2015. – Vol. 22 (4). – Р. 549–559. |
| [19] |
Qin, W. Modulated electro-hyperthermia enhances dendritic cell therapy through an abscopal effect in mice / W. Qin [et al.] // Oncol. Rep. – 2014. – Vol. 32 (6). – Р. 2373–2379. |
| [20] |
Yoon, S.M. Case of abscopal effect with metastatic non-small-cell lung cancer / S.M. Yoon, J.S. Lee // Oncothermia J. – 2012. – № 5. – Р. 53–57. |
Eco-Vector
/
| 〈 |
|
〉 |