Electrical stimulation of the spinal cord: modern possibilities of application in neurorehabilitation
Airat R. Galimov , Evelina R. Tuliakova , Elizaveta V. Komkina , Elizaveta V. Kravchenko , Eva D. Alshevskaya , Aydan A. Amirova , Yana Yu. Penkova , Dina M. Birbraer , Adilya U. Gallyamova , Ekaterina V. Kharechko , Elena S. Kochkina , Khadizhat M. Magomedova , Lolita B. Aviyan , Elina F. Kharisova
Medical and Social Expert Evaluation and Rehabilitation ›› 2024, Vol. 27 ›› Issue (2) : 93 -108.
Electrical stimulation of the spinal cord: modern possibilities of application in neurorehabilitation
Injuries and disorders of the nervous system are a significant public health problem both in Russia and globally. In recent years, significant progress has been made in the development of spinal cord stimulation techniques aimed at restoring lost functions. Epidural (ESCS) and percutaneous (PSCS) spinal cord stimulation are promising approaches capable of improving motor activity and restoring sensitivity in patients with various neurological conditions. As a result of the research search, 3,887 publications were extracted from PubMed/MEDLINE databases and 1,432 publications found using Google Scholar. After the selection procedure, 66 articles were included in the review. Recent studies demonstrate that ESCS and PSCS can improve motor and sensory functions in various neurological diseases, opening up new opportunities to improve the quality of life of patients. Despite the fact that these neuromodulation methods have already proven their effectiveness in improving motor function and restoring sensory feedback, most of the work carried out so far has been in the nature of pilot studies. The successful clinical implementation of both ESCS and PSCS in the field of rehabilitation will require larger and more comprehensive studies, including home trials, to provide convincing evidence of their potential in restorative medicine. In addition, to optimize the effect on the dorsal roots of the spinal cord, it is necessary to improve existing electrode designs for ESCS. In this regard, further work and funding in the field of equipment development, stimulation protocols and scientific research for ESCS and PSCS should become priorities in the near future.
electrical stimulation of the spinal cord / epidural stimulation of the spinal cord / percutaneous stimulation of the spinal cord / spinal cord injury / Parkinson’s disease / multiple sclerosis / spinal muscular atrophy / sensitivity / motor function
| [1] |
Seleznev FA, Petrovsky MYu, Belov MD, et al. Spinal cord injury: new concepts in understanding the work of epidural stimulators and other modern treatment methods. Effective pharmacotherapy. 2024;20(34):36–42. doi: 10.33978/2307-3586-2024-20-34-36-42 |
| [2] |
Селезнёв Ф.А., Петровский М.Ю., Белов М.Д., и др. Травма спинного мозга: новые концепции в понимании работы эпидуральных стимуляторов и другие современные методы лечения // Эффективная фармакотерапия. 2024. Т. 20, № 34. С. 36–42. doi: 10.33978/2307-3586-2024-20-34-36-42 |
| [3] |
Borozdenko DA, Bogorodova VI, Kiseleva NM, Negrebetsky VV. Parkinson’s disease: epidemiology and pathogenesis. Russian Medicine. 2021;27(2):183–194. doi: 10.17816/0869-2106-2021-27-2-183-194 |
| [4] |
Борозденко Д.А., Богородова В.И., Киселёва Н.М., Негребецкий В.В. Болезнь Паркинсона: эпидемиология и патогенез // Российский медицинский журнал. 2021. Т. 27, № 2. C. 183–194. doi: 10.17816/0869-2106-2021-27-2-183-194 |
| [5] |
Svetlichnaya AV. Epidemiological Characteristics of Inflammatory Demyelinating Diseases of the Central Nervous System Including Multiple Sclerosis. Epidemiology and Vaccinal Prevention. 2024;23(1):21–32. doi: 10.31631/2073-3046-2024-23-1-21-32 |
| [6] |
Светличная А.В. Эпидемиологическая характеристика идиопатических воспалительных демиелинизирующих заболеваний ЦНС, включая рассеянный склероз // Эпидемиология и вакцинопрофилактика. 2024. Т. 23, № 1. С. 21–32. doi: 10.31631/2073-3046-2024-23-1-21-32 |
| [7] |
Gayduk AI, Vlasov IaV. Spinal muscular atrophy in samara region. Epidemiology, classification, prospects for health care. S.S. Korsakov Journal of Neurology and Psychiatry. 2019;119(12):88–93. doi: 10.17116/jnevro201911912188 |
| [8] |
Гайдук А.Я., Власов Я.В. Спинальные мышечные атрофии в Самарской области: эпидемиология, классификация, перспективы оказания медицинской помощи // Журнал неврологии и психиатрии им. С.С. Корсакова. 2019. Т. 119, № 12. С. 88–93. doi: 10.17116/jnevro201911912188 |
| [9] |
Kovalev VV, Bril EV, Semenov MS, et al. Spinal cord stimulation for freezing of gait in Parkinson’s disease and progressive supranuclear palsy: a case series. Almanac of Clinical Medicine. 2022;50(5):315–320. doi: 10.18786/2072-0505-2022-50-029 |
| [10] |
Ковалёв В.В., Бриль Е.В., Семёнов М.С., и др. Влияние стимуляции спинного мозга на коррекцию застываний при ходьбе у пациентов с болезнью Паркинсона и прогрессирующим надъядерным параличом: серия клинических наблюдений // Альманах клинической медицины. 2022. Т. 50, № 5. C. 315–320. doi: 10.18786/2072-0505-2022-50-029 |
| [11] |
Moshonkina TR, Pogolskaya MA, Vinogradskaya ZV, et al. Transcutaneous spinal cord electrical stimulation in motor rehabilitation of patients with spinal cord injury. Integrative Physiology. 2020;1(4):351–365. doi: 10.33910/2687-1270-2020-14-351-365 |
| [12] |
Мошонкина Т.Р., Погольская М.А., Виноградская З.В., и др. Чрескожная электрическая стимуляция спинного мозга в двигательной реабилитации пациентов с травмой спинного мозга // Интегративная физиология. 2020. Т. 1, № 4. С. 351–365. doi: 10.33910/2687-1270-2020-14-351-365 |
| [13] |
Dmitriev AB, Rzaev DA, Denisova NP. Application of spinal cord stimulation in the treatment of persistent pain in failed back surgery syndrome. Neyrokhirurgiya. 2018;20(2):43–49. doi: 10.17650/1683-3295-2018-20-2-43-49 |
| [14] |
Дмитриев А.Б., Рзаев Д.А., Денисова Н.П. Постоянная эпидуральная стимуляция спинного мозга в лечении фармакорезистентной боли у пациентов с синдромом неудачной операции на позвоночнике // Нейрохирургия. 2018. Т. 20, № 2. С. 43–49. doi: 10.17650/1683-3295-2018-20-2-43-49 |
| [15] |
Denisova NP, Rogov DYu, Rzaev DA, et al. Spinal cord stimulation in the treatment of chronic pain syndromes. Burdenko’s Journal of Neurosurgery. 2016;80(2):47–52. (In Russ., In Engl.) doi: 10.17116/neiro201680247-52 |
| [16] |
Денисова Н.П., Рогов Д.Ю., Рзаев Д.А., и др. Стимуляция спинного мозга в лечении хронических болевых синдромов // Вопросы нейрохирургии им. Н.Н. Бурденко. 2016. Т. 80, № 2. С. 47–52. doi: 10.17116/neiro201680247-52 |
| [17] |
Lin A, Shaaya E, Calvert JS, et al. A Review of Functional Restoration From Spinal Cord Stimulation in Patients With Spinal Cord Injury. Neurospine. 2022;19(3):703–734. doi: 10.14245/ns.2244652.326 |
| [18] |
Lin A., Shaaya E., Calvert J.S., et al. A Review of Functional Restoration From Spinal Cord Stimulation in Patients With Spinal Cord Injury // Neurospine. 2022. Vol. 19, N 3. P. 703–734. doi: 10.14245/ns.2244652.326 |
| [19] |
Hofstoetter US, Freundl B, Binder H, Minassian K. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes. PLoS One. 2018;13(1):e0192013. doi: 10.1371/journal.pone.0192013 |
| [20] |
Hofstoetter U.S., Freundl B., Binder H., Minassian K. Common neural structures activated by epidural and transcutaneous lumbar spinal cord stimulation: Elicitation of posterior root-muscle reflexes // PLoS One. 2018. Vol. 13, N 1. P. e0192013. doi: 10.1371/journal.pone.0192013 |
| [21] |
Harmsen IE, Hasanova D, Elias GJ, et al. Trends in clinical trials for spinal cord stimulation. Stereotactic and Functional Neurosurgery. 2021;99(2):123–134. doi: 10.1159/000510775 |
| [22] |
Harmsen I.E., Hasanova D., Elias G.J., et al. Trends in clinical trials for spinal cord stimulation // Stereotactic and Functional Neurosurgery. 2021. Vol. 99, N 2. P. 123–134. doi: 10.1159/000510775 |
| [23] |
Bulakh AA, Kovlyagin DE. Traumatic spinal cord disease: etiology, clinic, diagnosis, long-term consequences. Bulletin of Science. 2024;6(75):1969–1979. doi: 10.24412/2712-8849-2024-675-1969-1979 |
| [24] |
Булах А.А., Ковлягин Д.Е. Травматическая болезнь спинного мозга: этиология, клиника, диагностика, отдалённые последствия // Вестник науки. 2024. Т. 6, № 75. С. 1969–1979. doi: 10.24412/2712-8849-2024-675-1969-1979 |
| [25] |
Prudnikova OG, Kachesova AA, Ryabykh SO. Rehabilitation of patients in late period after spinal cord injury: a meta-analysis of literature data. Russian Journal of Spine Surgery (Khirurgiya Pozvonochnika). 2019;16(3):8–16. doi: 10.14531/ss2019.3.8-16 |
| [26] |
Прудникова О.Г., Качесова А.А., Рябых С.О. Реабилитация пациентов в отдалённом периоде травмы спинного мозга: метаанализ литературных данных // Хирургия позвоночника. 2019. Т. 16, № 3. С. 8–16. doi: 10.14531/ss2019.3.8-16 |
| [27] |
D’hondt N, Marcial KM, Mittal N, et al. A Scoping Review of Epidural Spinal Cord Stimulation for Improving Motor and Voiding Function Following Spinal Cord Injury. Top Spinal Cord Inj Rehabil. 2023;29(2):12–30. doi: 10.46292/sci22-00061 |
| [28] |
D’hondt N., Marcial K.M., Mittal N., et al. A Scoping Review of Epidural Spinal Cord Stimulation for Improving Motor and Voiding Function Following Spinal Cord Injury // Top Spinal Cord Inj Rehabil. 2023. Vol. 29, N 2. Р. 12–30. doi: 10.46292/sci22-00061 |
| [29] |
Wagner FB, Mignardot JB, Le Goff-Mignardot CG, et al. Targeted neurotechnology restores walking in humans with spinal cord injury. Nature. 2018;563(7729):65–71. doi: 10.1038/s41586-018-0649-2. |
| [30] |
Wagner F.B., Mignardot J.B., Le Goff-Mignardot C.G., et al. Targeted neurotechnology restores walking in humans with spinal cord injury // Nature. 2018. Vol. 563, N 7729. P. 65–71. doi: 10.1038/s41586-018-0649-2 |
| [31] |
Angeli CA, Boakye M, Morton RA, et al. Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury. N Engl J Med. 2018;379(13):1244–1250. doi: 10.1056/NEJMoa1803588 |
| [32] |
Angeli C.A., Boakye M., Morton R.A., et al. Recovery of Over-Ground Walking after Chronic Motor Complete Spinal Cord Injury // N Engl J Med. 2018. Vol. 379, N 13. P. 1244–1250. doi: 10.1056/NEJMoa1803588 |
| [33] |
Gill ML, Grahn PJ, Calvert JS, et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia. Nat Med. 2018;24(11):1677–1682. doi: 10.1038/s41591-018-0175-7 |
| [34] |
Gill M.L., Grahn P.J., Calvert J.S., et al. Neuromodulation of lumbosacral spinal networks enables independent stepping after complete paraplegia // Nat Med. 2018. Vol. 24, N 11. P. 1677–1682. doi: 10.1038/s41591-018-0175-7 |
| [35] |
Rowald A, Komi S, Demesmaeker R, et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis. Nat Med. 2022;28(2):260–271. doi: 10.1038/s41591-021-01663-5 |
| [36] |
Rowald A., Komi S., Demesmaeker R., et al. Activity-dependent spinal cord neuromodulation rapidly restores trunk and leg motor functions after complete paralysis // Nat Med. 2022. Vol. 28, N 2. P. 260–271. doi: 10.1038/s41591-021-01663-5 |
| [37] |
Darrow D, Balser D, Netoff TI, et al. Epidural Spinal Cord Stimulation Facilitates Immediate Restoration of Dormant Motor and Autonomic Supraspinal Pathways after Chronic Neurologically Complete Spinal Cord Injury. J Neurotrauma. 2019;36(15):2325–2336. doi: 10.1089/neu.2018.6006 |
| [38] |
Darrow D., Balser D., Netoff T.I., et al. Epidural Spinal Cord Stimulation Facilitates Immediate Restoration of Dormant Motor and Autonomic Supraspinal Pathways after Chronic Neurologically Complete Spinal Cord Injury // J Neurotrauma. 2019. Vol. 36, N 15. P. 2325–2336. doi: 10.1089/neu.2018.6006 |
| [39] |
Peña Pino I, Hoover C, Venkatesh S, et al. Long-Term Spinal Cord Stimulation After Chronic Complete Spinal Cord Injury Enables Volitional Movement in the Absence of Stimulation. Front Syst Neurosci. 2020;14:35. doi: 10.3389/fnsys.2020.00035 |
| [40] |
Peña Pino I., Hoover C., Venkatesh S., et al. Long-Term Spinal Cord Stimulation After Chronic Complete Spinal Cord Injury Enables Volitional Movement in the Absence of Stimulation // Front Syst Neurosci. 2020. Vol. 14. P. 35. doi: 10.3389/fnsys.2020.00035 |
| [41] |
Rejc E, Smith AC, Weber KA, et al. Spinal Cord Imaging Markers and Recovery of Volitional Leg Movement With Spinal Cord Epidural Stimulation in Individuals With Clinically Motor Complete Spinal Cord Injury. Front Syst Neurosci. 2020;14:559313. doi: 10.3389/fnsys.2020.559313 |
| [42] |
Rejc E., Smith A.C., Weber K.A., et al. Spinal Cord Imaging Markers and Recovery of Volitional Leg Movement With Spinal Cord Epidural Stimulation in Individuals With Clinically Motor Complete Spinal Cord Injury // Front Syst Neurosci. 2020. Vol. 14. P. 559313. doi: 10.3389/fnsys.2020.559313 |
| [43] |
Balaguer JM, Prat-Ortega G, Verma N, et al. Supraspinal control of motoneurons after paralysis enabled by spinal cord stimulation. medRxiv [Preprint]. 2023:2023.11.29.23298779. doi: 10.1101/2023.11.29.23298779 |
| [44] |
Balaguer J.M., Prat-Ortega G., Verma N., et al. Supraspinal control of motoneurons after paralysis enabled by spinal cord stimulation // medRxiv [Preprint]. Vol. 2023. P. 2023.11.29.23298779. doi: 10.1101/2023.11.29.23298779 |
| [45] |
Hofstoetter US, Freundl B, Danner SM, et al. Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury. J Neurotrauma. 2020;37(3):481–493. doi: 10.1089/neu.2019.6588 |
| [46] |
Hofstoetter U.S., Freundl B., Danner S.M., et al. Transcutaneous Spinal Cord Stimulation Induces Temporary Attenuation of Spasticity in Individuals with Spinal Cord Injury // J Neurotrauma. 2020. Vol. 37, N 3. P. 481–493. doi: 10.1089/neu.2019.6588 |
| [47] |
Samejima S, Caskey CD, Inanici F, et al. Multisite Transcutaneous Spinal Stimulation for Walking and Autonomic Recovery in Motor-Incomplete Tetraplegia: A Single-Subject Design. Phys Ther. 2022;102(1):pzab228. doi: 10.1093/ptj/pzab228 |
| [48] |
Samejima S., Caskey C.D., Inanici F., et al. Multisite Transcutaneous Spinal Stimulation for Walking and Autonomic Recovery in Motor-Incomplete Tetraplegia: A Single-Subject Design // Phys Ther. 2022. Vol. 102, N 1. P. pzab228. doi: 10.1093/ptj/pzab228 |
| [49] |
Zhang F, Carnahan J, Ravi M, et al. Combining Spinal Cord Transcutaneous Stimulation with Activity-based Training to Improve Upper Extremity Function Following Cervical Spinal Cord Injury. Annu Int Conf IEEE Eng Med Biol Soc. 2023;2023:1–4. doi: 10.1109/EMBC40787.2023.10340976 |
| [50] |
Zhang F., Carnahan J., Ravi M., et al. Combining Spinal Cord Transcutaneous Stimulation with Activity-based Training to Improve Upper Extremity Function Following Cervical Spinal Cord Injury // Annu Int Conf IEEE Eng Med Biol Soc. 2023. Vol. 2023. P. 1–4. doi: 10.1109/EMBC40787.2023.10340976 |
| [51] |
Oh J, Scheffler MS, Mahan EE, et al. Combinatorial Effects of Transcutaneous Spinal Stimulation and Task-Specific Training to Enhance Hand Motor Output after Paralysis. Top Spinal Cord Inj Rehabil. 2023;29(Suppl):15–22. doi: 10.46292/sci23-00040S |
| [52] |
Oh J., Scheffler M.S., Mahan E.E., et al. Combinatorial Effects of Transcutaneous Spinal Stimulation and Task-Specific Training to Enhance Hand Motor Output after Paralysis // Top Spinal Cord Inj Rehabil. 2023. Vol. 29, Suppl. P. 15–22. doi: 10.46292/sci23-00040S |
| [53] |
Chandrasekaran S, Bhagat NA, Ramdeo R, et al. Targeted transcutaneous spinal cord stimulation promotes persistent recovery of upper limb strength and tactile sensation in spinal cord injury: a pilot study. Front Neurosci. 2023;17:1210328. doi: 10.3389/fnins.2023.1210328 |
| [54] |
Chandrasekaran S., Bhagat N.A., Ramdeo R., et al. Targeted transcutaneous spinal cord stimulation promotes persistent recovery of upper limb strength and tactile sensation in spinal cord injury: a pilot study // Front Neurosci. 2023. Vol. 17. P. 1210328. doi: 10.3389/fnins.2023.1210328 |
| [55] |
Inanici F, Brighton LN, Samejima S, et al. Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function After Spinal Cord Injury. IEEE Trans Neural Syst Rehabil Eng. 2021;29:310–319. doi: 10.1109/TNSRE.2021.3049133 |
| [56] |
Inanici F., Brighton L.N., Samejima S., et al. Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function After Spinal Cord Injury // IEEE Trans Neural Syst Rehabil Eng. 2021. Vol. 29. P. 310–319. doi: 10.1109/TNSRE.2021.3049133 |
| [57] |
Moshonkina TR, Pogolskaya MA, Vinogradskaya ZV, et al. Transcutaneous spinal cord electrical stimulation in motor rehabilitation of patients with spinal cord injury. Integrative Physiology. 2020;1(4):351–365. doi: 10.33910/2687-1270-2020-1-4-351-365 |
| [58] |
Мошонкина Т.Р., Погольская М.А., Виноградская З.В., и др. Чрескожная электрическая стимуляция спинного мозга в двигательной реабилитации пациентов с травмой спинного мозга // Интегративная физиология. 2020. Т. 1, № 4. С. 351–365. doi: 10.33910/2687-1270-2020-1-4-351-365 |
| [59] |
Savenkova AA, Sarana AM, Shcherbak SG, et al. Noninvasive spinal cord electrical stimulation in the complex rehabilitation of patients with spinal cord injury. Problems of Balneology, Physiotherapy and Exercise Therapy. 2019;96(5):11–18. doi: 10.17116/kurort20199605111 |
| [60] |
Савенкова А.А., Сарана А.М., Щербак С.Г., и др. Неинвазивная электрическая стимуляция спинного мозга в комплексной реабилитации больных со спинномозговой травмой // Вопросы курортологии, физиотерапии и лечебной физической культуры. 2019. Т. 96, № 5. С. 11–18. doi: 10.17116/kurort20199605111 |
| [61] |
Dalrymple AN, Hooper CA, Kuriakose MG, et al. Using a high-frequency carrier does not improve comfort of transcutaneous spinal cord stimulation. J Neural Eng. 2023;20(1). doi: 10.1088/1741-2552/acabe8 |
| [62] |
Dalrymple A.N., Hooper C.A., Kuriakose M.G., et al. Using a high-frequency carrier does not improve comfort of transcutaneous spinal cord stimulation // J Neural Eng. 2023. Vol. 20. N 1. doi: 10.1088/1741-2552/acabe8 |
| [63] |
Mukhametova E, Militskova A, Biktimirov A, et al. Consecutive Transcutaneous and Epidural Spinal Cord Neuromodulation to Modify Clinical Complete Paralysis-the Proof of Concept. Mayo Clin Proc Innov Qual Outcomes. 2023;8(1):1–16. doi: 10.1016/j.mayocpiqo.2023.09.006 |
| [64] |
Mukhametova E., Militskova A., Biktimirov A., et al. Consecutive Transcutaneous and Epidural Spinal Cord Neuromodulation to Modify Clinical Complete Paralysis-the Proof of Concept // Mayo Clin Proc Innov Qual Outcomes. 2023. Vol. 8, N 1. P. 1–16. doi: 10.1016/j.mayocpiqo.2023.09.006 |
| [65] |
Toriya VG, Vissarionov SV, Savina MV, Baindurashvili AG. Electrostimulation as a method of correction of respiratory disorders in patients with cervical spinal cord injury: A review. Pediatric Traumatology, Orthopaedics and Reconstructive Surgery. 2023;11(2):239–251. doi: 10.17816/PTORS191378 |
| [66] |
Тория В.Г., Виссарионов С.В., Савина М.В., Баиндурашвили А.Г. Электростимуляция как метод коррекции респираторных расстройств у пациентов с травмой шейного отдела спинного мозга (обзор литературы) // Ортопедия, травматология и восстановительная хирургия детского возраста. 2023. Т. 11, № 2. C. 239–251. doi: 10.17816/PTORS191378 |
| [67] |
Ignatyeva VI, Voznyuk IA, Shamalov NA, et al. Social and economic burden of stroke in Russian Federation. S.S. Korsakov Journal of Neurology and Psychiatry. 2023;123(8–2):5–15. doi: 10.17116/jnevro20231230825 |
| [68] |
Игнатьева В.И., Вознюк И.А., Шамалов Н.А., и др. Социально-экономическое бремя инсульта в Российской Федерации // Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2023. Т. 123, № 8–2. С. 5–15. doi: 10.17116/jnevro20231230825 |
| [69] |
Powell MP, Verma N, Sorensen E, et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis. Nat Med. 2023;29(3):689–699. doi: 10.1038/s41591-022-02202-6 |
| [70] |
Powell M.P., Verma N., Sorensen E., et al. Epidural stimulation of the cervical spinal cord for post-stroke upper-limb paresis // Nat Med. 2023. Vol. 29, N 3. P. 689–699. doi: 10.1038/s41591-022-02202-6 |
| [71] |
Moon Y, Yang C, Veit NC, et al. Noninvasive spinal stimulation improves walking in chronic stroke survivors: a proof-of-concept case series. Biomed Eng Online. 2024;23(1):38. doi: 10.1186/s12938-024-01231-1 |
| [72] |
Moon Y., Yang C., Veit N.C., et al. Noninvasive spinal stimulation improves walking in chronic stroke survivors: a proof-of-concept case series // Biomed Eng Online. 2024. Vol. 23, N 1. P. 38. doi: 10.1186/s12938-024-01231-1 |
| [73] |
Ananyev SS, Pavlov DA, Yakupov RN, et al. Transcranial Magnetic and Transcutaneous Spinal Cord Electrical Stimulation a Stroke-Patients Walking Correction: Blinded Clinical Randomised Study. Bulletin of Rehabilitation Medicine. 2023;22(4):14–22. doi: 10.38025/2078-1962-2023-22-4-14-22 |
| [74] |
Ананьев С.С., Павлов Д.А., Якупов Р.Н., и др. Транскраниальная магнитная и чрескожная электрическая стимуляция спинного мозга в коррекции ходьбы у пациентов после инсульта: слепое клиническое рандомизированное исследование // Вестник восстановительной медицины. 2023. Т. 22, № 4. C. 14–22. doi: 10.38025/2078-1962-2023-22-4-14-22 |
| [75] |
Pavlov DA. Percutaneous electrical stimulation of the spinal cord as a method of correcting motor functions after impaired cerebral circulation. In: Actual medical and biological problems of sports and physical culture: a collection of materials of the All-Russian conference with international participation, Volgograd, February 01–02, 2023. Part 2. Volgograd: Volgograd State Academy of Physical Culture; 2023: 254–263. EDN: MFBIOM |
| [76] |
Павлов Д.А. Чрескожная электростимуляция спинного мозга как метод коррекции двигательных функций после нарушения церебрального кровообращения. В кн.: Актуальные медико-биологические проблемы спорта и физической культуры: сборник материалов Всероссийской с международным участием конференции, Волгоград, 01–02 февраля 2023 года. Часть 2. Волгоград: Волгоградская государственная академия физической культуры, 2023. С. 254–263. EDN: MFBIOM |
| [77] |
Yakupov RN, Kotova EYu, Balykin YuM, et al. The effect of percutaneous electrical stimulation of the spinal cord and mechanotherapy on the excitability of spinal neural networks and locomotor functions of patients with cerebral circulatory disorders. Ulyanovsk Medical and Biological Journal. 2016;(4):121–128. EDN: XCSQSH |
| [78] |
Якупов Р.Н., Котова Е.Ю., Балыкин Ю.М., и др. Влияние чрескожной электростимуляции спинного мозга и механотерапии на возбудимость спинальных нейронных сетей и локомоторные функции пациентов с нарушениями мозгового кровообращения // Ульяновский медико-биологический журнал. 2016. № 4. С. 121–128. EDN: XCSQSH |
| [79] |
Hamadyanova AU, Kuznetsov KO, Gaifullina EI, et al. Androgens and Parkinson’s disease: the role in humans and in experiment. Problems of Endocrinology. 2022;68(6):146–156. doi: 10.14341/probl13148 |
| [80] |
Хамадьянова А.У., Кузнецов К.О., Гайфуллина Э.И., и др. Андрогены и болезнь Паркинсона: роль у человека и в эксперименте // Проблемы эндокринологии. 2022. Т. 68, № 6. С. 146–156. doi: 10.14341/probl13148 |
| [81] |
Asriyants SV, Tomsky AA, Gamaleya AA, Pronin IN. Deep brain stimulation of the subthalamic nucleus for parkinson’s disease: awake vs asleep. Burdenko’s Journal of Neurosurgery. 2021;85(5):117–121. (In Russ., In Engl.) doi: 10.17116/neiro202185051117 |
| [82] |
Асриянц С.В., Томский А.А., Гамалея А.А., Пронин И.Н. Электростимуляция субталамического ядра при болезни Паркинсона: под наркозом или в сознании? // Вопросы нейрохирургии им. Н.Н. Бурденко. 2021. Т. 85, № 5. С. 117–121. doi: 10.17116/neiro202185051117 |
| [83] |
Singh O, Carvalho DZ, Espay AJ, et al. Spinal cord stimulation for gait impairment in Parkinson Disease: scoping review and mechanistic considerations. Pain Med. 2023;24(2):11–17. doi: 10.1093/pm/pnad092 |
| [84] |
Singh O., Carvalho D.Z., Espay A.J., et al. Spinal cord stimulation for gait impairment in Parkinson Disease: scoping review and mechanistic considerations // Pain Med. 2023. Vol. 24, N 2. P. 11–17. doi: 10.1093/pm/pnad092 |
| [85] |
Kobayashi R, Kenji S, Taketomi A, et al. New mode of burst spinal cord stimulation improved mental status as well as motor function in a patient with Parkinson’s disease. Parkinsonism Relat Disord. 2018;57:82–83. doi: 10.1016/j.parkreldis.2018.07.002 |
| [86] |
Kobayashi R., Kenji S., Taketomi A., et al. New mode of burst spinal cord stimulation improved mental status as well as motor function in a patient with Parkinson’s disease // Parkinsonism Relat Disord. 2018. Vol. 57. P. 82–83. doi: 10.1016/j.parkreldis.2018.07.002 |
| [87] |
Lai Y, Pan Y, Wang L, et al. Spinal Cord Stimulation with Surgical Lead Improves Pain and Gait in Parkinson’s Disease after a Dislocation of Percutaneous Lead: A Case Report. Stereotact Funct Neurosurg. 2020;98(2):104–109. doi: 10.1159/000505707 |
| [88] |
Lai Y., Pan Y., Wang L., et al. Spinal Cord Stimulation with Surgical Lead Improves Pain and Gait in Parkinson’s Disease after a Dislocation of Percutaneous Lead: A Case Report // Stereotact Funct Neurosurg. 2020. Vol. 98, N 2. P. 104–109. doi: 10.1159/000505707 |
| [89] |
Zhou PB, Bao M. Spinal cord stimulation treatment for freezing of gait in Parkinson’s disease: A case report. Brain Stimul. 2022;15(1):76–77. doi: 10.1016/j.brs.2021.11.011 |
| [90] |
Zhou P.B., Bao M. Spinal cord stimulation treatment for freezing of gait in Parkinson’s disease: A case report // Brain Stimul. 2022. Vol. 15, N 1. P. 76–77. doi: 10.1016/j.brs.2021.11.011 |
| [91] |
Chakravarthy KV, Chaturvedi R, Agari T, et al. Single arm prospective multicenter case series on the use of burst stimulation to improve pain and motor symptoms in Parkinson’s disease. Bioelectron Med. 2020;6:18. doi: 10.1186/s42234-020-00055-3 |
| [92] |
Chakravarthy K.V., Chaturvedi R., Agari T., et al. Single arm prospective multicenter case series on the use of burst stimulation to improve pain and motor symptoms in Parkinson’s disease // Bioelectron Med. 2020. Vol. 6. P. 18. doi: 10.1186/s42234-020-00055-3 |
| [93] |
Furusawa Y, Matsui A, Kobayashi-Noami K, et al. Burst spinal cord stimulation for pain and motor function in Parkinson’s disease: A case series. Clin Park Relat Disord. 2020;3:100043. doi: 10.1016/j.prdoa.2020.100043 |
| [94] |
Furusawa Y., Matsui A., Kobayashi-Noami K., et al. Burst spinal cord stimulation for pain and motor function in Parkinson’s disease: A case series // Clin Park Relat Disord. 2020. Vol. 3. P. 100043. doi: 10.1016/j.prdoa.2020.100043 |
| [95] |
Hubsch C, D’Hardemare V, Ben Maacha M, et al. Tonic spinal cord stimulation as therapeutic option in Parkinson disease with axial symptoms: Effects on walking and quality of life. Parkinsonism Relat Disord. 2019;63:235–237. doi: 10.1016/j.parkreldis.2019.02.044 |
| [96] |
Hubsch C., D’Hardemare V., Ben Maacha M., et al. Tonic spinal cord stimulation as therapeutic option in Parkinson disease with axial symptoms: Effects on walking and quality of life // Parkinsonism Relat Disord. 2019. Vol. 63. P. 235–237. doi: 10.1016/j.parkreldis.2019.02.044 |
| [97] |
Samotus O, Parrent A, Jog M. Long-term update of the effect of spinal cord stimulation in advanced Parkinson’s disease patients. Brain Stimul. 2020;13(5):1196–1197. doi: 10.1016/j.brs.2020.06.004 |
| [98] |
Samotus O., Parrent A., Jog M. Long-term update of the effect of spinal cord stimulation in advanced Parkinson’s disease patients // Brain Stimul. 2020. Vol. 13, N 5. P. 1196–1197. doi: 10.1016/j.brs.2020.06.004 |
| [99] |
Fonoff ET, de Lima-Pardini AC, Coelho DB, et al. Spinal Cord Stimulation for Freezing of Gait: From Bench to Bedside. Front Neurol. 2019;10:905. doi: 10.3389/fneur.2019.00905 |
| [100] |
Fonoff E.T., de Lima-Pardini A.C., Coelho D.B., et al. Spinal Cord Stimulation for Freezing of Gait: From Bench to Bedside // Front Neurol. 2019. Vol. 10. P. 905. doi: 10.3389/fneur.2019.00905 |
| [101] |
Kovalev VV, Bril EV, Semenov MS, et al. Spinal cord stimulation for freezing of gait in Parkinson’s disease and progressive supranuclear palsy: a case series. Almanac of Clinical Medicine. 2022;50(5):315–320. doi: 10.18786/2072-0505-2022-50-029 |
| [102] |
Ковалёв В.В., Бриль Е.В., Семёнов М.С., и др. Влияние стимуляции спинного мозга на коррекцию застываний при ходьбе у пациентов с болезнью Паркинсона и прогрессирующим надъядерным параличом: серия клинических наблюдений // Альманах клинической медицины. 2022. Т. 50, № 5. C. 315–320. doi: 10.18786/2072-0505-2022-50-029 |
| [103] |
Shaglaeva YaS, Titova MA, Pashkovskaya DV, et al. Adherence to treatment in the management of patients with multiple sclerosis. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(7–2):26–32. doi: 10.17116/jnevro202412407226 |
| [104] |
Шаглаева Я.С., Титова М.А., Пашковская Д.В., и др. Приверженность лечению в ведении пациентов с рассеянным склерозом // Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2024. Т. 124, № 7–2. С. 26–32. doi: 10.17116/jnevro202412407226 |
| [105] |
Boĭko AN, Gusev EI. Current algorithms of diagnosis and treatment of multiple sclerosis based on the individual assessment of the patient. S.S. Korsakov Journal of Neurology and Psychiatry. 2017;117(2–2):92–106. doi: 10.17116/jnevro20171172292-106 |
| [106] |
Бойко А.Н., Гусев Е.И. Современные алгоритмы диагностики и лечения рассеянного склероза, основанные на индивидуальной оценке состояния пациента // Журнал неврологии и психиатрии им. С.С. Корсакова. Спецвыпуски. 2017. Т. 117, № 2–2. С. 92–106. doi: 10.17116/jnevro20171172292-106 |
| [107] |
Goodwin BJ, Mahmud R, TomThundyil S, et al. The Efficacy of Spinal Cord Stimulators in the Reduction of Multiple Sclerosis Spasticity: A Narrative Systematic Review. Brain Neurorehabil. 2023;16(2):e19. doi: 10.12786/bn.2023.16.e19 |
| [108] |
Goodwin B.J., Mahmud R., TomThundyil S., et al. The Efficacy of Spinal Cord Stimulators in the Reduction of Multiple Sclerosis Spasticity: A Narrative Systematic Review // Brain Neurorehabil. 2023. Vol. 16, N 2. P. 19. doi: 10.12786/bn.2023.16.e19 |
| [109] |
Hofstoetter US, Freundl B, Lackner P, Binder H. Transcutaneous Spinal Cord Stimulation Enhances Walking Performance and Reduces Spasticity in Individuals with Multiple Sclerosis. Brain Sci. 2021;11(4):472. doi: 10.3390/brainsci11040472 |
| [110] |
Hofstoetter U.S., Freundl B., Lackner P., Binder H. Transcutaneous Spinal Cord Stimulation Enhances Walking Performance and Reduces Spasticity in Individuals with Multiple Sclerosis // Brain Sci. 2021. Vol. 11, N 4. P. 472. doi: 10.3390/brainsci11040472 |
| [111] |
Ponomarenko GN, Koltsov AA, Maltsev IS. General issues of spinal muscular atrophy (scientific review). Etiology, clinical features, approaches in rehabilitation and orthopedic treatment. Russian journal of the physial therapy, balneotherapy and rehabilitation. 2021;20(4):341–355. doi: 10.17816/rjpbr83799 |
| [112] |
Пономаренко Г.Н., Кольцов А.А., Мальцев И.С. Общие вопросы спинальной мышечной атрофии (научный обзор). Этиология, клинические особенности, подходы в реабилитации и ортопедическом лечении // Физиотерапия, бальнеология и реабилитация. 2021. Т. 20, № 4. С. 341–355. doi: 10.17816/rjpbr83799 |
| [113] |
Capogrosso M, Prat-Ortega G, Ensel S, et al. Targeted Stimulation of the Sensory Afferents Improves Motoneuron Function in Humans With Spinal Muscular Atrophy. 2024: PREPRINT (Version 1). doi: 10.21203/rs.3.rs-3970994/v1 |
| [114] |
Capogrosso M., Prat-Ortega G., Ensel S., et al. Targeted Stimulation of the Sensory Afferents Improves Motoneuron Function in Humans With Spinal Muscular Atrophy. 2024: PREPRINT (Version 1). doi: 10.21203/rs.3.rs-3970994/v1 |
| [115] |
Shchurova EN, Prudnikova OG, Kachesova AA, et al. Improvement of Functional State of Patients after Spinal Cord Injury During Epidural Electrical Stimulation: Prospective Study. Bulletin of Rehabilitation Medicine. 2023;22(6):28–41. doi: 10.38025/2078-1962-2023-22-6-28-41 |
| [116] |
Щурова Е.Н., Прудникова О.Г., Качесова А.А., и др. Улучшение функционального состояния пациентов с последствиями позвоночно-спинномозговой травмы при эпидуральной электростимуляции: проспективное исследование // Вестник восстановительной медицины. 2023. Т. 22, № 6. C. 28–41. doi: 10.38025/2078-1962-2023-22-6-28-41 |
| [117] |
Chandrasekaran S, Nanivadekar AC, McKernan G, et al. Correction: Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees. Elife. 2021;10:e72438. doi: 10.7554/eLife.72438 |
| [118] |
Chandrasekaran S., Nanivadekar A.C., McKernan G., et al. Correction: Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees // Elife. 2021. Vol. 10. P. e72438. doi: 10.7554/eLife.72438 |
| [119] |
Nanivadekar AC, Chandrasekaran S, Helm ER, et al. Closed-loop stimulation of lateral cervical spinal cord in upper-limb amputees to enable sensory discrimination: a case study. Sci Rep. 2022;12(1):17002. doi: 10.1038/s41598-022-21264-7 |
| [120] |
Nanivadekar A.C., Chandrasekaran S., Helm E.R., et al. Closed-loop stimulation of lateral cervical spinal cord in upper-limb amputees to enable sensory discrimination: a case study // Sci Rep. 2022. Vol. 12, N 1. P. 17002. doi: 10.1038/s41598-022-21264-7 |
| [121] |
Nanivadekar AC, Bose R, Petersen BA, et al. Restoration of sensory feedback from the foot and reduction of phantom limb pain via closed-loop spinal cord stimulation. Nat Biomed Eng. 2024;8(8):992–1003. doi: 10.1038/s41551-023-01153-8 |
| [122] |
Nanivadekar A.C., Bose R., Petersen B.A., et al. Restoration of sensory feedback from the foot and reduction of phantom limb pain via closed-loop spinal cord stimulation // Nat Biomed Eng. 2024. Vol. 8, N 8. P. 992–1003. doi: 10.1038/s41551-023-01153-8 |
| [123] |
Dalrymple AN, Bose R, Sarma D, et al. Reflex modulation and functional improvements following spinal cord stimulation for sensory restoration after lower-limb amputation. medRxiv. 2023:2023–09. |
| [124] |
Dalrymple A.N., Bose R., Sarma D., et al. Reflex modulation and functional improvements following spinal cord stimulation for sensory restoration after lower-limb amputation // medRxiv. Vol. 2023. P. 2023–09. |
| [125] |
Formento E, D’Anna E, Gribi S, et al. A biomimetic electrical stimulation strategy to induce asynchronous stochastic neural activity. J Neural Eng. 2020;17(4):046019. doi: 10.1088/1741-2552/aba4fc |
| [126] |
Formento E., D’Anna E., Gribi S., et al. A biomimetic electrical stimulation strategy to induce asynchronous stochastic neural activity // J Neural Eng. 2020. Vol. 17, N 4. P. 046019. doi: 10.1088/1741-2552/aba4fc |
| [127] |
Dalrymple AN, Fisher LE, Weber DJ. A preliminary study exploring the effects of transcutaneous spinal cord stimulation on spinal excitability and phantom limb pain in people with a transtibial amputation. J Neural Eng. 2024;21(4):10.1088/1741-2552/ad6a8d. doi: 10.1088/1741-2552/ad6a8d |
| [128] |
Dalrymple A.N., Fisher L.E., Weber D.J. A preliminary study exploring the effects of transcutaneous spinal cord stimulation on spinal excitability and phantom limb pain in people with a transtibial amputation // J Neural Eng. 2024. Vol. 21, N 4. P. 10.1088/1741-2552/ad6a8d. doi: 10.1088/1741-2552/ad6a8d |
| [129] |
Solinsky R, Specker-Sullivan L, Wexler A. Current barriers and ethical considerations for clinical implementation of epidural stimulation for functional improvement after spinal cord injury. J Spinal Cord Med. 2020;43(5):653–656. doi: 10.1080/10790268.2019.1666240 |
| [130] |
Solinsky R., Specker-Sullivan L., Wexler A. Current barriers and ethical considerations for clinical implementation of epidural stimulation for functional improvement after spinal cord injury // J Spinal Cord Med. 2020. Vol. 43, N 5. P. 653–656. doi: 10.1080/10790268.2019.1666240 |
| [131] |
Yoo HJ, Koo B, Yong CW, Lee KS. Prediction of gait recovery using machine learning algorithms in patients with spinal cord injury. Medicine (Baltimore). 2024;103(23):e38286. doi: 10.1097/MD.0000000000038286 |
| [132] |
Yoo H.J., Koo B., Yong C.W., Lee K.S. Prediction of gait recovery using machine learning algorithms in patients with spinal cord injury // Medicine (Baltimore). 2024. Vol. 103, N 23. P. e38286. doi: 10.1097/MD.0000000000038286 |
Eco-Vector
/
| 〈 |
|
〉 |