Multifaceted roles of ASB proteins and its pathological significance

Vivek Vishnu Anasa, Palaniyandi Ravanan, Priti Talwar

PDF(1269 KB)
PDF(1269 KB)
Front. Biol. ›› 2018, Vol. 13 ›› Issue (5) : 376-388. DOI: 10.1007/s11515-018-1506-2
RESEARCH ARTICLE

Multifaceted roles of ASB proteins and its pathological significance

Author information +
History +

Abstract

BACKGROUND: Post-translational (PT) modification in cells regulates many intracellular events like signal transduction, transcription, cell cycle, protein quality control, apoptosis and cellular development. Ubiquitination is one of the PT modifications which functions as a marker for degradation of target proteins by the proteasome and as a regulatory mechanism for several signalling pathways. The ubiquitination mechanism requires multiple enzymes, including E1, E2, and E3 ligases. Among them, E3 ligases play a major role in recognizing target proteins and an essential feature of protein homeostatic mechanisms within the cell. Most of the ASB (ankyrin repeat SOCS box) proteins function as RING family of E3 ubiquitin ligases characterized by the presence of two conserved domains N-terminal ankyrin repeat and C-terminal SOCS box domain

METHODS and RESULTS: Current studies have shown that some ASBs function as important regulators of several signalling pathways. This review gives an overview of ASB proteins on numerous cellular processes such as insulin signalling, spermatogenesis, myogenesis and in cellular development. Including various pathological situations, such as cancer, primary open-angle glaucoma, and inflammation, indicating that ASBs has important functions in both normal and pathological development

CONCLUSIONS: This article provides a precise comprehensive focus on ASBs protein structure, its biological functions, and their pathological significance.

Keywords

ankyrin repeat / SOCS box / E3 ligase / cancer / spermatogenesis / cellular development

Cite this article

Download citation ▾
Vivek Vishnu Anasa, Palaniyandi Ravanan, Priti Talwar. Multifaceted roles of ASB proteins and its pathological significance. Front. Biol., 2018, 13(5): 376‒388 https://doi.org/10.1007/s11515-018-1506-2

References

[1]
Albertson D G, Collins C, McCormick F, Gray J W (2003). Chromosome aberrations in solid tumors. Nat Genet, 34(4): 369–376
CrossRef Pubmed Google scholar
[2]
Andresen C A, Smedegaard S, Sylvestersen K B, Svensson C, Iglesias-Gato D, Cazzamali G, Nielsen T K, Nielsen M L, Flores-Morales A (2014). Protein interaction screening for the ankyrin repeats and suppressor of cytokine signaling (SOCS) box (ASB) family identify Asb11 as a novel endoplasmic reticulum resident ubiquitin ligase. J Biol Chem, 289(4): 2043–2054
CrossRef Pubmed Google scholar
[3]
Au V, Tsang F H, Man K, Fan S T, Poon R T, Lee N P (2014). Expression of ankyrin repeat and SOCS box containing 4 (ASB4) confers migration and invasion properties of hepatocellular carcinoma cells. Biosci Trends, 8(2): 101–110
CrossRef Pubmed Google scholar
[4]
Baer C, Claus R, Plass C (2013). Genome-wide epigenetic regulation of miRNAs in cancer. Cancer Res, 73(2): 473–477
CrossRef Pubmed Google scholar
[5]
Bello N F, Lamsoul I, Heuzé M L, Métais A, Moreaux G, Calderwood D A, Duprez D, Moog-Lutz C, Lutz P G (2009). The E3 ubiquitin ligase specificity subunit ASB2b is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradation. Cell Death Differ, 16(6): 921–932
CrossRef Pubmed Google scholar
[6]
Ben-Baruch A (2006). Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Seminars in cancer biology, Elsevier.
[7]
Blenk S, Engelmann J, Weniger M, Schultz J, Dittrich M, Rosenwald A, Müller-Hermelink H K, Müller T, Dandekar T (2007). Germinal center B cell-like (GCB) and activated B cell-like (ABC) type of diffuse large B cell lymphoma (DLBCL): analysis of molecular predictors, signatures, cell cycle state and patient survival. Cancer Inform, 3: 399–420
CrossRef Pubmed Google scholar
[8]
Bode M, Wu Y, Pi X, Lockyer P, Dechyapirom W, Portbury A L, Patterson C (2011). Regulation of ASB4 expression in the immortalized murine endothelial cell lines MS1 and SVR: a role for TNF-a and oxygen. Cell Biochem Funct, 29(4): 334
CrossRef Pubmed Google scholar
[9]
Boengler K, Pipp F, Fernandez B, Richter A, Schaper W, Deindl E (2003). The ankyrin repeat containing SOCS box protein 5: a novel protein associated with arteriogenesis. Biochem Biophys Res Commun, 302(1): 17–22
CrossRef Pubmed Google scholar
[10]
Bork P (1993). Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins, 17(4): 363–374
CrossRef Pubmed Google scholar
[11]
Chung A S, Guan Y J, Yuan Z L, Albina J E, Chin Y E (2005). Ankyrin repeat and SOCS box 3 (ASB3) mediates ubiquitination and degradation of tumor necrosis factor receptor II. Mol Cell Biol, 25(11): 4716–4726
CrossRef Pubmed Google scholar
[12]
Clermont Y (1972). Kinetics of spermatogenesis in mammals: seminiferous epithelium cycle and spermatogonial renewal. Physiol Rev, 52(1): 198–236
CrossRef Pubmed Google scholar
[13]
Costa M L, Escaleira R, Cataldo A, Oliveira F, Mermelstein C S (2004). Desmin: molecular interactions and putative functions of the muscle intermediate filament protein. Braz J Med Biol Res, 37(12): 1819–1830
CrossRef Pubmed Google scholar
[14]
Coussens L M, Werb Z (2002). Inflammation and cancer. Nature, 420(6917): 860–867
CrossRef Pubmed Google scholar
[15]
Croker B A, Kiu H, Nicholson S E (2008). SOCS regulation of the JAK/STAT signalling pathway. Seminars in cell & developmental biology, Elsevier.
[16]
Crosetto N, Bienko M, Dikic I (2006). Ubiquitin hubs in oncogenic networks. Mol Cancer Res, 4(12): 899–904
CrossRef Pubmed Google scholar
[17]
da Silva M A S,Peppelenbosch M P(2003). Size matters: the emerging role of ASB proteins in controlling cell fate decisions and cancer development. Werking en functie van ASB eiwitten in de regulatie van compartimentgrootte: 15.
CrossRef Google scholar
[18]
Debrincat M A, Zhang J G, Willson T A, Silke J, Connolly L M, Simpson R J, Alexander W S, Nicola N A, Kile B T, Hilton D J (2007). Ankyrin repeat and suppressors of cytokine signaling box protein asb-9 targets creatine kinase B for degradation. J Biol Chem, 282(7): 4728–4737
CrossRef Pubmed Google scholar
[19]
Diks S H, Bink R J, van de Water S, Joore J, van Rooijen C, Verbeek F J, den Hertog J, Peppelenbosch M P, Zivkovic D (2006). The novel gene asb11: a regulator of the size of the neural progenitor compartment. J Cell Biol, 174(4): 581–592
CrossRef Pubmed Google scholar
[20]
Du W Y, Lu Z H, Ye W, Fu X, Zhou Y, Kuang C M, Wu J X, Pan Z Z, Chen S, Liu R Y, Huang W L (2017). The loss-of-function mutations and down-regulated expression of ASB3 gene promote the growth and metastasis of colorectal cancer cells. Chin J Cancer, 36(1): 11
CrossRef Pubmed Google scholar
[21]
Fei X, Gu X, Fan S, Yang Z, Li F, Zhang C, Gong W, Mao Y, Ji C (2012). Crystal structure of Human ASB9-2 and substrate-recognition of CKB. Protein J, 31(4): 275–284
CrossRef Pubmed Google scholar
[22]
Ferguson J 3rd,Wu Y(2007). Ankyrin repeat and SOCS Box Protein 4 (ASB4) is a hydroxylation substrate of factor inhibiting HIF1 {alpha}(FIH) and promotes vascular differentiation via an oxygen-dependent mechanism. Cell Signal, 19(6):1185–92
[23]
Ferguson J E 3rd, Wu Y, Smith K, Charles P, Powers K, Wang H, Patterson C (2007). ASB4 is a hydroxylation substrate of FIH and promotes vascular differentiation via an oxygen-dependent mechanism. Mol Cell Biol, 27(18): 6407–6419
CrossRef Pubmed Google scholar
[24]
Foord R, Taylor I A, Sedgwick S G, Smerdon S J (1999). X-ray structural analysis of the yeast cell cycle regulator Swi6 reveals variations of the ankyrin fold and has implications for Swi6 function. Nat Struct Biol, 6(2): 157–165
CrossRef Pubmed Google scholar
[25]
Groothuis T A, Dantuma N P, Neefjes J, Salomons F A (2006). Ubiquitin crosstalk connecting cellular processes. Cell Div, 1(1): 21
CrossRef Pubmed Google scholar
[26]
Guibal F C, Moog-Lutz C, Smolewski P, Di Gioia Y, Darzynkiewicz Z, Lutz P G, Cayre Y E (2002). ASB-2 inhibits growth and promotes commitment in myeloid leukemia cells. J Biol Chem, 277(1): 218–224
CrossRef Pubmed Google scholar
[27]
Guo J H, Saiyin H, Wei Y H, Chen S, Chen L, Bi G, Ma L J, Zhou G J, Huang C Q, Yu L, Dai L (2004). Expression of testis specific ankyrin repeat and SOCS box-containing 17 gene. Arch Androl, 50(3): 155–161
CrossRef Pubmed Google scholar
[28]
Hilton D J (1999). Negative regulators of cytokine signal transduction. Cell Mol Life Sci, 55(12): 1568–1577
CrossRef Pubmed Google scholar
[29]
Hilton D J, Richardson R T, Alexander W S, Viney E M, Willson T A, Sprigg N S, Starr R, Nicholson S E, Metcalf D, Nicola N A (1998). Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA, 95(1): 114–119
CrossRef Pubmed Google scholar
[30]
Hirokawa N, Noda Y, Tanaka Y, Niwa S (2009). Kinesin superfamily motor proteins and intracellular transport. Nat Rev Mol Cell Biol, 10(10): 682–696
CrossRef Pubmed Google scholar
[31]
Hotamisligil G S (2006). Inflammation and metabolic disorders. Nature, 444(7121): 860–867
CrossRef Pubmed Google scholar
[32]
Jang C Y, Wong J, Coppinger J A, Seki A, Yates J R 3rd, Fang G (2008). DDA3 recruits microtubule depolymerase Kif2a to spindle poles and controls spindle dynamics and mitotic chromosome movement. J Cell Biol, 181(2): 255–267
CrossRef Pubmed Google scholar
[33]
Johnson D G, Walker C L (1999). Cyclins and cell cycle checkpoints. Annu Rev Pharmacol Toxicol, 39(1): 295–312
CrossRef Pubmed Google scholar
[34]
Kamura T, Sato S, Haque D, Liu L, Kaelin W G Jr, Conaway R C, Conaway J W (1998). The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev, 12(24): 3872–3881
CrossRef Pubmed Google scholar
[35]
Keller K E, Wirtz M K (2016). Working your SOCS off: The role of ASB10 and protein degradation pathways in glaucoma. Exp Eye Res
Pubmed
[36]
Kile B T, Schulman B A, Alexander W S, Nicola N A, Martin H M, Hilton D J (2002). The SOCS box: a tale of destruction and degradation. Trends Biochem Sci, 27(5): 235–241
CrossRef Pubmed Google scholar
[37]
Kim K S, Kim M S, Kim S K, Baek K H (2004). Murine Asb-17 expression during mouse testis development and spermatogenesis. Zygote, 12(2): 151–156
CrossRef Pubmed Google scholar
[38]
Kim S K, Rhim S Y, Lee M R,Kim J S, Kim H J, Lee D R, Kim K S (2008). Stage-specific expression of ankyrin and SOCS box protein-4 (Asb-4) during spermatogenesis. Mol Cell, 25(2):317–21
[39]
Kohroki J, Nishiyama T, Nakamura T, Masuho Y (2005). ASB proteins interact with Cullin5 and Rbx2 to form E3 ubiquitin ligase complexes. FEBS Lett, 579(30): 6796–6802
CrossRef Pubmed Google scholar
[40]
Lai K C, Chang K W, Liu C J, Lee T C (2006). Enhanced expression of ASB6 and IFIT2 in oral squamous cell carcinoma, AACR.
[41]
Lamsoul I, Burande C F, Razinia Z, Houles T C, Menoret D, Baldassarre M, Erard M, Moog-Lutz C, Calderwood D A, Lutz P G (2011). Functional and structural insights into ASB2a, a novel regulator of integrin-dependent adhesion of hematopoietic cells. J Biol Chem, 286(35): 30571–30581
CrossRef Pubmed Google scholar
[42]
Lee M R,Kim S K, Kim J S, Rhim S Y,Kim K S (2008). Expression of murine Asb-9 during mouse spermatogenesis. Mol Cell, 26(6):621–4
[43]
Lee N P, Leung K W, Cheung N, Lam B Y, Xu M Z, Sham P C, Lau G K, Poon R T, Fan S T, Luk J M (2008). Comparative proteomic analysis of mouse livers from embryo to adult reveals an association with progression of hepatocellular carcinoma. Proteomics, 8(10): 2136–2149
CrossRef Pubmed Google scholar
[44]
Li J, Mahajan A, Tsai M D (2006). Ankyrin repeat: a unique motif mediating protein-protein interactions. Biochemistry, 45(51): 15168–15178
CrossRef Pubmed Google scholar
[45]
Li J Y, Chai B, Zhang W, Wu X, Zhang C, Fritze D, Xia Z, Patterson C, Mulholland M W (2011). Ankyrin repeat and SOCS box containing protein 4 (Asb-4) colocalizes with insulin receptor substrate 4 (IRS4) in the hypothalamic neurons and mediates IRS4 degradation. BMC Neurosci, 12(1): 95
CrossRef Pubmed Google scholar
[46]
Linossi E M, Nicholson S E (2012). The SOCS box-adapting proteins for ubiquitination and proteasomal degradation. IUBMB Life, 64(4): 316–323
CrossRef Pubmed Google scholar
[47]
Liu Y, Li J, Zhang F, Qin W, Yao G, He X, Xue P, Ge C, Wan D, Gu J (2003). Molecular cloning and characterization of the human ASB-8 gene encoding a novel member of ankyrin repeat and SOCS box containing protein family. Biochem Biophys Res Commun, 300(4): 972–979
CrossRef Pubmed Google scholar
[48]
Lux S E, John K M, Bennett V (1990). Analysis of cDNA for human erythrocyte ankyrin indicates a repeated structure with homology to tissue-differentiation and cell-cycle control proteins.   Nature 344(6261):36–42
[49]
Marcotte E M, Pellegrini M, Yeates T O, Eisenberg D (1999). A census of protein repeats. J Mol Biol, 293(1): 151–160
CrossRef Pubmed Google scholar
[50]
Maxwell P H, Wiesener M S, Chang G W, Clifford S C, Vaux E C, Cockman M E, Wykoff C C, Pugh C W, Maher E R, Ratcliffe P J (1999). The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature, 399(6733): 271–275
CrossRef Pubmed Google scholar
[51]
McDaneld T G, Hannon K, Moody D E (2006). Ankyrin repeat and SOCS box protein 15 regulates protein synthesis in skeletal muscle. Am J Physiol Regul Integr Comp Physiol, 290(6): R1672–R1682
CrossRef Pubmed Google scholar
[52]
McDaneld T G, Spurlock D M (2008). Ankyrin repeat and suppressor of cytokine signaling (SOCS) box-containing protein (ASB) 15 alters differentiation of mouse C2C12 myoblasts and phosphorylation of mitogen-activated protein kinase and Akt. J Anim Sci, 86(11): 2897–2902
CrossRef Pubmed Google scholar
[53]
Mocellin S, Rossi C R, Pilati P, Nitti D (2005). Tumor necrosis factor, cancer and anticancer therapy. Cytokine Growth Factor Rev, 16(1): 35–53
CrossRef Pubmed Google scholar
[54]
Morris L G, Veeriah S, Chan T A (2010). Genetic determinants at the interface of cancer and neurodegenerative disease. Oncogene, 29(24): 3453–3464
CrossRef Pubmed Google scholar
[55]
Mosavi L K, Cammett T J, Desrosiers D C, Peng Z Y (2004). The ankyrin repeat as molecular architecture for protein recognition. Protein Sci, 13(6): 1435–1448
CrossRef Pubmed Google scholar
[56]
Mosavi L K, Minor D L Jr, Peng Z Y (2002). Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci USA, 99(25): 16029–16034
CrossRef Pubmed Google scholar
[57]
Nie L, Zhao Y, Wu W, Yang Y Z, Wang H C, Sun X H (2011). Notch-induced Asb2 expression promotes protein ubiquitination by forming non-canonical E3 ligase complexes. Cell Res, 21(5): 754–769
CrossRef Pubmed Google scholar
[58]
Okumura F, Matsuzaki M, Nakatsukasa K, Kamura T (2012).The role of elongin BC-containing ubiquitin ligases. Front Oncol, 2: 10
[59]
Pahl H L (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 18(49): 6853–6866
CrossRef Pubmed Google scholar
[60]
Plum L, Belgardt B F, Brüning J C (2006). Central insulin action in energy and glucose homeostasis. J Clin Invest, 116(7): 1761–1766
CrossRef Pubmed Google scholar
[61]
Seki A, Coppinger J A, Jang C Y, Yates J R, Fang G (2008). Bora and the kinase Aurora a cooperatively activate the kinase Plk1 and control mitotic entry. Science, 320(5883): 1655–1658
CrossRef Pubmed Google scholar
[62]
Sonnhammer E L, Von Heijne G, Krogh A (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol, 6:175–82
[63]
Tee J M, Peppelenbosch M P (2010). Anchoring skeletal muscle development and disease: the role of ankyrin repeat domain containing proteins in muscle physiology. Crit Rev Biochem Mol Biol, 45(4): 318–330
CrossRef Pubmed Google scholar
[64]
Tee J M, Sartori da Silva M A, Rygiel A M, Muncan V, Bink R, van den Brink G R, van Tijn P, Zivkovic D, Kodach L L, Guardavaccaro D, Diks S H, Peppelenbosch M P (2012). asb11 is a regulator of embryonic and adult regenerative myogenesis. Stem Cells Dev, 21(17): 3091–3103
CrossRef Pubmed Google scholar
[65]
Thomas J C, Matak-Vinkovic D, Van Molle I, Ciulli A (2013). Multimeric complexes among ankyrin-repeat and SOCS-box protein 9 (ASB9), ElonginBC, and Cullin 5: insights into the structure and assembly of ECS-type Cullin-RING E3 ubiquitin ligases. Biochemistry, 52(31): 5236–5246
CrossRef Pubmed Google scholar
[66]
Thottakara T, Friedrich F W, Reischmann S, Braumann S, Schlossarek S, Krämer E, Juhr D, Schlüter H, van der Velden J, Münch J, Patten M, Eschenhagen T, Moog-Lutz C, Carrier L (2015). The E3 ubiquitin ligase Asb2b is downregulated in a mouse model of hypertrophic cardiomyopathy and targets desmin for proteasomal degradation. J Mol Cell Cardiol, 87: 214–224
CrossRef Pubmed Google scholar
[67]
Tokuoka M, Miyoshi N, Hitora T, Mimori K, Tanaka F, Shibata K, Ishii H, Sekimoto M, Doki Y, Mori M (2010). Clinical significance of ASB9 in human colorectal cancer. Int J Oncol, 37(5): 1105–1111
Pubmed
[68]
Townley-Tilson W H, Wu Y, Ferguson J E 3rd, Patterson C (2014). The ubiquitin ligase ASB4 promotes trophoblast differentiation through the degradation of ID2. PLoS One, 9(2): e89451
CrossRef Pubmed Google scholar
[69]
Uematsu K, Okumura F, Tonogai S, Joo-Okumura A, Alemayehu D H, Nishikimi A, Fukui Y, Nakatsukasa K, Kamura T (2016). ASB7 regulates spindle dynamics and genome integrity by targeting DDA3 for proteasomal degradation. J Cell Biol, 215(1): 95–106
CrossRef Pubmed Google scholar
[70]
van Kouwenhove M, Kedde M, Agami R (2011). MicroRNA regulation by RNA-binding proteins and its implications for cancer. Nat Rev Cancer, 11(9): 644–656
CrossRef Pubmed Google scholar
[71]
Wajant H, Pfizenmaier K, Scheurich P (2003). Tumor necrosis factor signaling. Cell Death Differ, 10(1): 45–65
CrossRef Pubmed Google scholar
[72]
Wang J, Muntean A G, Hess J L (2012). ECSASB2 mediates MLL degradation during hematopoietic differentiation. Blood, 119(5): 1151–1161
CrossRef Pubmed Google scholar
[73]
Wauman J, De Smet A S, Catteeuw D, Belsham D, Tavernier J (2008). Insulin receptor substrate 4 couples the leptin receptor to multiple signaling pathways. Mol Endocrinol, 22(4): 965–977
CrossRef Pubmed Google scholar
[74]
Wilcox A, Katsanakis K D, Bheda F, Pillay T S (2004). Asb6, an adipocyte-specific ankyrin and SOCS box protein, interacts with APS to enable recruitment of elongins B and C to the insulin receptor signaling complex. J Biol Chem, 279(37): 38881–38888
CrossRef Pubmed Google scholar
[75]
Wilcox G (2005). Insulin and insulin resistance. Clin Biochem Rev, 26(2): 19–39
Pubmed
[76]
Yang X Y, Ren C P, Wang L, Li H, Jiang C J, Zhang H B, Zhao M, Yao K T (2005). Identification of differentially expressed genes in metastatic and non-metastatic nasopharyngeal carcinoma cells by suppression subtractive hybridization. Cell Oncol, 27(4): 215–223
Pubmed
[77]
Yuan J H, Yang F, Chen B F, Lu Z, Huo X S, Zhou W P, Wang F, Sun S H (2011). The histone deacetylase 4/SP1/microrna-200a regulatory network contributes to aberrant histone acetylation in hepatocellular carcinoma. Hepatology, 54(6): 2025–2035
CrossRef Pubmed Google scholar
[78]
Ziemin-van der Poel S, McCabe N R, Gill H J, Espinosa R 3rd, Patel Y, Harden A, Rubinelli P, Smith S D, LeBeau M M, Rowley J D (1991). Identification of a gene, MLL, that spans the breakpoint in 11q23 translocations associated with human leukemias. Proc Natl Acad Sci USA, 88(23): 10735–10739
CrossRef Pubmed Google scholar

Acknowledgements

The authors wish to greatly acknowledge VIT University. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sector. The authors wish to thank Navin Kumar B for his help in the manuscript proof reading.

Compliance with ethical standards

The authors declare no conflicts of interests and the project was funded by no third party. Humans/Animal research were not involved in any part of the research.

RIGHTS & PERMISSIONS

2018 Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature
PDF(1269 KB)

Accesses

Citations

Detail

Sections
Recommended

/