Metabolic control of adult neural stem cell behavior
Marlen Knobloch, Sebastian Jessberger
Metabolic control of adult neural stem cell behavior
Neural stem cells generate new neurons throughout life in distinct regions of the mammalian brain. This process, called adult neurogenesis, is important for tissue homeostasis and physiological brain function. In addition, failing or altered neurogenesis has been associated with a number of diseases such as major depression and epilepsy. Thus, understanding the molecular mechanisms governing the neurogenic process in the adult brain may enable future therapeutic approaches to target neural stem/progenitor cells (NSPCs) and their progeny to ameliorate disease symptoms and/or disease progression. Recently, the control of cellular metabolism has emerged as a regulator of NSPC activity in the adult brain. Here we review recent findings that attempt to describe stage-specific modulations of metabolism to ensure proper neurogenesis and suggest future avenues of research aiming to understand how metabolism affects NSPC behavior.
adult neurogenesis / metabolic switch / quiescence / proliferation / differentiation
[1] |
Ables J L, Decarolis N A, Johnson M A, Rivera P D, Gao Z, Cooper D C, Radtke F, Hsieh J, Eisch A J (2010). Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci, 30(31): 10484–10492
CrossRef
Pubmed
Google scholar
|
[2] |
Altman J, Das G D (1964). Autoradiographic examination of the effects of enriched environment on the rate of glial multiplication in the adult rat brain. Nature, 204(4964): 1161–1163
CrossRef
Pubmed
Google scholar
|
[3] |
Ben Abdallah N M B, Slomianka L, Vyssotski A L, Lipp H P (2010). Early age-related changes in adult hippocampal neurogenesis in C57 mice. Neurobiol Aging, 31(1): 151–161
CrossRef
Pubmed
Google scholar
|
[4] |
Bergmann O, Liebl J, Bernard S, Alkass K, Yeung M S Y, Steier P, Kutschera W, Johnson L, Landén M, Druid H, Spalding K L, Frisén J (2012). The age of olfactory bulb neurons in humans. Neuron, 74(4): 634–639
CrossRef
Pubmed
Google scholar
|
[5] |
Boitard C, Etchamendy N, Sauvant J, Aubert A, Tronel S, Marighetto A, Layé S, Ferreira G (2012). Juvenile, but not adult exposure to high-fat diet impairs relational memory and hippocampal neurogenesis in mice. Hippocampus, 22(11): 2095–2100
CrossRef
Pubmed
Google scholar
|
[6] |
Bonaguidi M A, Song J, Ming G L, Song H (2012). A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol, 22(5): 754–761
CrossRef
Pubmed
Google scholar
|
[7] |
Braun S M G, Jessberger S (2014). Adult neurogenesis and its role in neuropsychiatric disease, brain repair and normal brain function. Neuropathol Appl Neurobiol, 40(1): 3–12
CrossRef
Pubmed
Google scholar
|
[8] |
Candelario K M, Shuttleworth C W, Cunningham L A (2013). Neural stem/progenitor cells display a low requirement for oxidative metabolism independent of hypoxia inducible factor-1alpha expression. J Neurochem, 125(3): 420–429
CrossRef
Pubmed
Google scholar
|
[9] |
Chorna N E, Santos-Soto I J, Carballeira N M, Morales J L, de la Nuez J, Cátala-Valentin A, Chornyy A P, Vázquez-Montes A, De Ortiz S P (2013). Fatty acid synthase as a factor required for exercise-induced cognitive enhancement and dentate gyrus cellular proliferation. PLoS ONE, 8(11): e77845
CrossRef
Pubmed
Google scholar
|
[10] |
Christian K M, Song H, Ming G L (2014). Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci, 37(1): 243–262
CrossRef
Pubmed
Google scholar
|
[11] |
Costa M R, Ortega F, Brill M S, Beckervordersandforth R, Petrone C, Schroeder T, Götz M, Berninger B (2011). Continuous live imaging of adult neural stem cell division and lineage progression in vitro. Development, 138(6): 1057–1068
CrossRef
Pubmed
Google scholar
|
[12] |
Deng W, Aimone J B, Gage F H (2010). New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci, 11(5): 339–350
|
[13] |
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1997). Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci, 17(13): 5046–5061
Pubmed
|
[14] |
Doetsch F, García-Verdugo J M, Alvarez-Buylla A (1999). Regeneration of a germinal layer in the adult mammalian brain. Proc Natl Acad Sci USA, 96(20): 11619–11624
CrossRef
Pubmed
Google scholar
|
[15] |
Eijkelenboom A, Burgering B M T (2013). FOXOs: signalling integrators for homeostasis maintenance. Nat Rev Mol Cell Biol, 14(2): 83–97
CrossRef
Pubmed
Google scholar
|
[16] |
Encinas J M, Michurina T V, Peunova N, Park J H, Tordo J, Peterson D A, Fishell G, Koulakov A, Enikolopov G (2011). Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell, 8(5): 566–579
CrossRef
Pubmed
Google scholar
|
[17] |
Eriksson P S, Perfilieva E, Björk-Eriksson T, Alborn A M, Nordborg C, Peterson D A, Gage F H (1998). Neurogenesis in the adult human hippocampus. Nat Med, 4(11): 1313–1317
CrossRef
Pubmed
Google scholar
|
[18] |
Favaro R, Valotta M, Ferri A L M, Latorre E, Mariani J, Giachino C, Lancini C, Tosetti V, Ottolenghi S, Taylor V, Nicolis S K (2009). Hippocampal development and neural stem cell maintenance require Sox2-dependent regulation of Shh. Nat Neurosci, 12(10): 1248–1256
CrossRef
Pubmed
Google scholar
|
[19] |
Folmes C D L, Dzeja P P, Nelson T J, Terzic A (2012). Metabolic plasticity in stem cell homeostasis and differentiation. Cell Stem Cell, 11(5): 596–606
CrossRef
Pubmed
Google scholar
|
[20] |
Folmes C D L, Nelson T J, Martinez-Fernandez A, Arrell D K, Lindor J Z, Dzeja P P, Ikeda Y, Perez-Terzic C, Terzic A (2011). Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab, 14(2): 264–271
CrossRef
Pubmed
Google scholar
|
[21] |
Fukata Y, Fukata M (2010). Protein palmitoylation in neuronal development and synaptic plasticity. Nat Rev Neurosci, 11(3): 161–75
|
[22] |
Gan B, Hu J, Jiang S, Liu Y, Sahin E, Zhuang L, Fletcher-Sananikone E, Colla S, Wang Y A, Chin L, Depinho R A (2010). Lkb1 regulates quiescence and metabolic homeostasis of haematopoietic stem cells. Nature, 468(7324): 701–704
CrossRef
Pubmed
Google scholar
|
[23] |
Ge S, Goh E L K, Sailor K A, Kitabatake Y, Ming G L, Song H (2006). GABA regulates synaptic integration of newly generated neurons in the adult brain. Nature, 439(7076): 589–593
CrossRef
Pubmed
Google scholar
|
[24] |
Gurumurthy S, Xie S Z, Alagesan B, Kim J, Yusuf R Z, Saez B, Tzatsos A, Ozsolak F, Milos P, Ferrari F, Park P J, Shirihai O S, Scadden D T, Bardeesy N (2010). The Lkb1 metabolic sensor maintains haematopoietic stem cell survival. Nature, 468(7324): 659–663
CrossRef
Pubmed
Google scholar
|
[25] |
Homem C C F, Steinmann V, Burkard T R, Jais A, Esterbauer H, Knoblich J A (2014). Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell, 158(4): 874–888
CrossRef
Pubmed
Google scholar
|
[26] |
Ito K, Carracedo A, Weiss D, Arai F, Ala U, Avigan D E, Schafer Z T, Evans R M, Suda T, Lee C H, Pandolfi P P (2012). A PML–PPAR-δ pathway for fatty acid oxidation regulates hematopoietic stem cell maintenance. Nat Med, 18(9): 1350–1358
CrossRef
Pubmed
Google scholar
|
[27] |
Ito K, Suda T (2014). Metabolic requirements for the maintenance of self-renewing stem cells. Nat Rev Mol Cell Biol, 15(4): 243–256
CrossRef
Pubmed
Google scholar
|
[28] |
Iwanaga T, Tsutsumi R, Noritake J, Fukata Y, Fukata M (2009). Progress in lipid research. Prog Lipid Res, 48: 117–127
CrossRef
Pubmed
Google scholar
|
[29] |
Kheirbek M A, Klemenhagen K C, Sahay A, Hen R (2012). Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci, 15(12): 1613–1620
CrossRef
Pubmed
Google scholar
|
[30] |
Kim D Y, Rhee I, Paik J (2014). Metabolic circuits in neural stem cells. Cell Mol Life Sci, 71(21): 4221–4241
CrossRef
Pubmed
Google scholar
|
[31] |
Kim J Y, Liu C Y, Zhang F, Duan X, Wen Z, Song J, Feighery E, Lu B, Rujescu D, St Clair D, Christian K, Callicott J H, Weinberger D R, Song H, Ming G L (2012). Interplay between DISC1 and GABA signaling regulates neurogenesis in mice and risk for schizophrenia. Cell, 148(5): 1051–1064
CrossRef
Pubmed
Google scholar
|
[32] |
Knobloch M, Von Schoultz C, Zurkirchen L, Braun S M G, Vidmar M, Jessberger S (2014) Spot14-positive neural stem/progenitor cells in the hippocampus respond dynamically to neurogenic regulators. Stem Cell Rep, 3: 1–8
|
[33] |
Knobloch M, Braun S M G, Zurkirchen L, von Schoultz C, Zamboni N, Araúzo-Bravo M J, Kovacs W J, Karalay O, Suter U, Machado R A, Roccio M, Lutolf M P, Semenkovich C F, Jessberger S (2013). Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature, 493(7431): 226–230
CrossRef
Pubmed
Google scholar
|
[34] |
Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer R P, Horvat V, Volk B, Kempermann G (2010). Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS ONE, 5(1): e8809
CrossRef
Pubmed
Google scholar
|
[35] |
Kokoeva M V, Yin H, Flier J S (2005). Neurogenesis in the hypothalamus of adult mice: potential role in energy balance. Science, 310(5748): 679–683
CrossRef
Pubmed
Google scholar
|
[36] |
Kuhn H G, Dickinson-Anson H, Gage F H (1996). Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci, 16(6): 2027–2033
Pubmed
|
[37] |
Lee D A, Bedont J L, Pak T, Wang H, Song J, Miranda-Angulo A, Takiar V, Charubhumi V, Balordi F, Takebayashi H, Aja S, Ford E, Fishell G, Blackshaw S (2012). Tanycytes of the hypothalamic median eminence form a diet-responsive neurogenic niche. Nat Neurosci, 15(5): 700–702
CrossRef
Pubmed
Google scholar
|
[38] |
Lee D A, Blackshaw S (2012). Functional implications of hypothalamic neurogenesis in the adult mammalian brain. Int J Dev Neurosci, 30(8): 615–621
CrossRef
Pubmed
Google scholar
|
[39] |
Lee J, Duan W, Long J M, Ingram D K, Mattson M P (2000). Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci, 15(2): 99–108
CrossRef
Pubmed
Google scholar
|
[40] |
Lee J, Seroogy K B, Mattson M P (2002). Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem, 80(3): 539–547
CrossRef
Pubmed
Google scholar
|
[41] |
Li J, Tang Y, Cai D (2012). IKKβ/NF-κB disrupts adult hypothalamic neural stem cells to mediate a neurodegenerative mechanism of dietary obesity and pre-diabetes. Nat Cell Biol, 14(10): 999–1012
CrossRef
Pubmed
Google scholar
|
[42] |
Lie D C, Colamarino S A, Song H J, Désiré L, Mira H, Consiglio A, Lein E S, Jessberger S, Lansford H, Dearie A R, Gage F H (2005). Wnt signalling regulates adult hippocampal neurogenesis. Nature, 437(7063): 1370–1375
CrossRef
Pubmed
Google scholar
|
[43] |
Lindqvist A, Mohapel P, Bouter B, Frielingsdorf H, Pizzo D, Brundin P, Erlanson-Albertsson C (2006). High-fat diet impairs hippocampal neurogenesis in male rats. Eur J Neurol, 13(12): 1385–1388
CrossRef
Pubmed
Google scholar
|
[44] |
Lugert S, Basak O, Knuckles P, Haussler U, Fabel K, Götz M, Haas C A, Kempermann G, Taylor V, Giachino C (2010). Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell, 6(5): 445–456
CrossRef
Pubmed
Google scholar
|
[45] |
Ma D K, Kim W R, Ming G L, Song H (2009). Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann N Y Acad Sci, 1170(1): 664–673
CrossRef
Pubmed
Google scholar
|
[46] |
Menendez J A, Lupu R (2007). Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat Rev Cancer, 7(10): 763–777
CrossRef
Pubmed
Google scholar
|
[47] |
Mira H, Andreu Z, Suh H, Lie D C, Jessberger S, Consiglio A, San Emeterio J, Hortigüela R, Marqués-Torrejón M Á, Nakashima K, Colak D, Götz M, Fariñas I, Gage F H (2010). Signaling through BMPR-IA regulates quiescence and long-term activity of neural stem cells in the adult hippocampus. Cell Stem Cell, 7(1): 78–89
CrossRef
Pubmed
Google scholar
|
[48] |
Morton G J, Cummings D E, Baskin D G, Barsh G S, Schwartz M W (2006). Central nervous system control of food intake and body weight. Nature, 443(7109): 289–295
CrossRef
Pubmed
Google scholar
|
[49] |
Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini S S, Chen W, Hosseini M, Behjati F, Haas S, Jamali P, Zecha A, Mohseni M, Püttmann L, Vahid L N, Jensen C, Moheb L A, Bienek M, Larti F, Mueller I, Weissmann R, Darvish H, Wrogemann K, Hadavi V, Lipkowitz B, Esmaeeli-Nieh S, Wieczorek D, Kariminejad R, Firouzabadi S G, Cohen M, Fattahi Z, Rost I, Mojahedi F, Hertzberg C, Dehghan A, Rajab A, Banavandi M J, Hoffer J, Falah M, Musante L, Kalscheuer V, Ullmann R, Kuss A W, Tzschach A, Kahrizi K, Ropers H H (2011). Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature, 478(7367): 57–63
CrossRef
Pubmed
Google scholar
|
[50] |
Nakada D, Saunders T L, Morrison S J (2010). Lkb1 regulates cell cycle and energy metabolism in haematopoietic stem cells. Nature, 468(7324): 653–658
CrossRef
Pubmed
Google scholar
|
[51] |
Orford K W, Scadden D T (2008). Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet, 9(2): 115–128
CrossRef
Pubmed
Google scholar
|
[52] |
Paik J H, Ding Z, Narurkar R, Ramkissoon S, Muller F, Kamoun W S, Chae S S, Zheng H, Ying H, Mahoney J, Hiller D, Jiang S, Protopopov A, Wong W H, Chin L, Ligon K L, DePinho R A (2009). FoxOs cooperatively regulate diverse pathways governing neural stem cell homeostasis. Cell Stem Cell, 5(5): 540–553
CrossRef
Pubmed
Google scholar
|
[53] |
Park H R, Park M, Choi J, Park K Y, Chung H Y, Lee J (2010). Neuroscience Letters. Neurosci Lett, 482: 235–239
CrossRef
Pubmed
Google scholar
|
[54] |
Renault V M, Rafalski V A, Morgan A A, Salih D A M, Brett J O, Webb A E, Villeda S A, Thekkat P U, Guillerey C, Denko N C, Palmer T D, Butte A J, Brunet A (2009). FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell, 5(5): 527–539
CrossRef
Pubmed
Google scholar
|
[55] |
Schulz T J, Huang P, Huang T L, Xue R, McDougall L E, Townsend K L, Cypess A M, Mishina Y, Gussoni E, Tseng Y H (2013). Brown-fat paucity due to impaired BMP signalling induces compensatory browning of white fat. Nature, 495(7441): 379–383
CrossRef
Pubmed
Google scholar
|
[56] |
Schulz T J, Tseng Y H (2009). Emerging role of bone morphogenetic proteins in adipogenesis and energy metabolism. Cytokine Growth Factor Rev, 20(5–6): 523–531
CrossRef
Pubmed
Google scholar
|
[57] |
Sims J K, Manteiga S, Lee K (2013). Towards high resolution analysis of metabolic flux in cells and tissues. Curr Opin Biotechnol, 24(5): 933–939
CrossRef
Pubmed
Google scholar
|
[58] |
Song J, Zhong C, Bonaguidi M A, Sun G J, Hsu D, Gu Y, Meletis K, Huang Z J, Ge S, Enikolopov G, Deisseroth K, Luscher B, Christian K M, Ming G L, Song H (2012). Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature, 489(7414): 150–154
CrossRef
Pubmed
Google scholar
|
[59] |
Spalding K L, Bergmann O, Alkass K, Bernard S, Salehpour M, Huttner H B, Boström E, Westerlund I, Vial C, Buchholz B A, Possnert G, Mash D C, Druid H, Frisén J (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6): 1219–1227
CrossRef
Pubmed
Google scholar
|
[60] |
Steib K, Schäffner I, Jagasia R, Ebert B, Lie D C (2014). Mitochondria modify exercise-induced development of stem cell-derived neurons in the adult brain. J Neurosci, 34(19): 6624–6633
CrossRef
Pubmed
Google scholar
|
[61] |
Stein L R, Imai S (2014). Specific ablation of Nampt in adult neural stem cells recapitulates their functional defects during aging. EMBO J, 33(12): 1321–1340
Pubmed
|
[62] |
Stoll E A, Cheung W, Mikheev A M, Sweet I R, Bielas J H, Zhang J, Rostomily R C, Horner P J (2011). Aging neural progenitor cells have decreased mitochondrial content and lower oxidative metabolism. J Biol Chem, 286(44): 38592–38601
CrossRef
Pubmed
Google scholar
|
[63] |
Suda T, Takubo K, Semenza G L (2011). Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell, 9(4): 298–310
CrossRef
Pubmed
Google scholar
|
[64] |
Suh H, Deng W, Gage F H (2009). Signaling in adult neurogenesis. Annu Rev Cell Dev Biol, 25(1): 253–275
CrossRef
Pubmed
Google scholar
|
[65] |
Teperino R, Amann S, Bayer M, McGee S L, Loipetzberger A, Connor T, Jaeger C, Kammerer B, Winter L, Wiche G, Dalgaard K, Selvaraj M, Gaster M, Lee-Young R S, Febbraio M A, Knauf C, Cani P D, Aberger F, Penninger J M, Pospisilik J A, Esterbauer H (2012). Hedgehog partial agonism drives Warburg-like metabolism in muscle and brown fat. Cell, 151(2): 414–426
CrossRef
Pubmed
Google scholar
|
[66] |
Teperino R, Schoonjans K, Auwerx J (2010). Perspective. Cell Metab, 12: 321–327
CrossRef
Pubmed
Google scholar
|
[67] |
Vander Heiden M G, Cantley L C, Thompson C B (2009). Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science, 324(5930): 1029–1033
CrossRef
Pubmed
Google scholar
|
[68] |
Varum S, Rodrigues A S, Moura M B, Momcilovic O, Easley C A 4th, Ramalho-Santos J, Van Houten B, Schatten G (2011). Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS ONE, 6(6): e20914
CrossRef
Pubmed
Google scholar
|
[69] |
Villeda S A, Luo J, Mosher K I, Zou B, Britschgi M, Bieri G, Stan T M, Fainberg N, Ding Z, Eggel A, Lucin K M, Czirr E, Park J S, Couillard-Després S, Aigner L, Li G, Peskind E R, Kaye J A, Quinn J F, Galasko D R, Xie X S, Rando T A, Wyss-Coray T (2011). The ageing systemic milieu negatively regulates neurogenesis and cognitive function. Nature, 477(7362): 90–94
CrossRef
Pubmed
Google scholar
|
[70] |
Zhang J, Nuebel E, Daley G Q, Koehler C M, Teitell M A (2012). Metabolic regulation in pluripotent stem cells during reprogramming and self-renewal. Cell Stem Cell, 11(5): 589–595
CrossRef
Pubmed
Google scholar
|
[71] |
Zhao C, Deng W, Gage F H (2008). Mechanisms and functional implications of adult neurogenesis. Cell, 132(4): 645–660
CrossRef
Pubmed
Google scholar
|
/
〈 | 〉 |