The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor

Chaohong LIU, Margaret K. FALLEN, Heather MILLER, Arpita UPADHYAYA, Wenxia SONG

PDF(242 KB)
PDF(242 KB)
Front. Biol. ›› 2013, Vol. 8 ›› Issue (5) : 475-485. DOI: 10.1007/s11515-013-1272-0
REVIEW

The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor

Author information +
History +

Abstract

The B cell antigen receptor (BCR) is the sensor on the B cell surface that surveys foreign molecules (antigen) in our bodies and activates B cells to generate antibody responses upon encountering cognate antigen. The binding of antigen to the BCR induces signaling cascades in the cytoplasm, which provides the first signal for B cell activation. Subsequently, BCRs internalize and target bound antigen to endosomes, where antigen is processed into T cell recognizable forms. T helper cells generate the second activation signal upon binding to antigen presented by B cells. The optimal activation of B cells requires both signals, thereby depending on the coordination of BCR signaling and antigen transport functions. Antigen binding to the BCR also induces rapid remodeling of the cortical actin network of B cells. While being initiated and controlled by BCR signaling, recent studies reveal that this actin remodeling is critical for both the signaling and antigen processing functions of the BCR, indicating a role for actin in coordinating these two pathways. Here we will review previous and recent studies on actin reorganization during BCR activation and BCR-mediated antigen processing, and discuss how actin remodeling translates BCR signaling into rapid antigen uptake and processing while providing positive and negative feedback to BCR signaling.

Keywords

actin cytoskeleton / endocytosis / signal transduction / receptor

Cite this article

Download citation ▾
Chaohong LIU, Margaret K. FALLEN, Heather MILLER, Arpita UPADHYAYA, Wenxia SONG. The actin cytoskeleton coordinates the signal transduction and antigen processing functions of the B cell antigen receptor. Front Biol, 2013, 8(5): 475‒485 https://doi.org/10.1007/s11515-013-1272-0

References

[1]
Ahmed S (2011). Nanoscopy of cell architecture: The actin-membrane interface. BioArchitecture, 1(1): 32–38
CrossRef Pubmed Google scholar
[2]
Amann K J, Pollard T D (2001). The Arp2/3 complex nucleates actin filament branches from the sides of pre-existing filaments. Nat Cell Biol, 3(3): 306–310
CrossRef Pubmed Google scholar
[3]
Baba Y, Hashimoto S, Matsushita M, Watanabe D, Kishimoto T, Kurosaki T, Tsukada S (2001). BLNK mediates Syk-dependent Btk activation. Proc Natl Acad Sci USA, 98(5): 2582–2586
CrossRef Pubmed Google scholar
[4]
Bachvaroff R J, Miller F, Rapaport F T (1980). Appearance of cytoskeletal components on the surface of leukemia cells and of lymphocytes transformed by mitogens and Epstein-Barr virus. Proc Natl Acad Sci USA, 77(8): 4979–4983
CrossRef Pubmed Google scholar
[5]
Bassing C H, Swat W, Alt F W (2002). The mechanism and regulation of chromosomal V(D)J recombination. Cell, 109(2 Suppl): S45–S55
CrossRef Pubmed Google scholar
[6]
Bernstein B W, Bamburg J R (2010). ADF/cofilin: a functional node in cell biology. Trends Cell Biol, 20(4): 187–195
CrossRef Pubmed Google scholar
[7]
Blundell M P, Bouma G, Metelo J, Worth A, Calle Y, Cowell L A, Westerberg L S, Moulding D A, Mirando S, Kinnon C, Cory G O, Jones G E, Snapper S B, Burns S O, Thrasher A J (2009). Phosphorylation of WASp is a key regulator of activity and stability in vivo. Proc Natl Acad Sci USA, 106(37): 15738–15743
CrossRef Pubmed Google scholar
[8]
Boes M, Cuvillier A, Ploegh H (2004). Membrane specializations and endosome maturation in dendritic cells and B cells. Trends Cell Biol, 14(4): 175–183
CrossRef Pubmed Google scholar
[9]
Bolland S, Pearse R N, Kurosaki T, Ravetch J V (1998). SHIP modulates immune receptor responses by regulating membrane association of Btk. Immunity, 8(4): 509–516
CrossRef Pubmed Google scholar
[10]
Braun J, Fujiwara K, Pollard T D, Unanue E R (1978). Two distinct mechanisms for redistribution of lymphocyte surface macromolecules. I. Relationship to cytoplasmic myosin. J Cell Biol, 79(2 Pt 1): 409–418
CrossRef Pubmed Google scholar
[11]
Braun J, Hochman P S, Unanue E R (1982). Ligand-induced association of surface immunoglobulin with the detergent-insoluble cytoskeletal matrix of the B lymphocyte. J Immunol, 128(3): 1198–1204
Pubmed
[12]
Brauweiler A M, Cambier J C (2003). Fc gamma RIIB activation leads to inhibition of signalling by independently ligated receptors. Biochem Soc Trans, 31(Pt 1): 281–285
CrossRef Pubmed Google scholar
[13]
Brezski R J, Monroe J G (2008). B-cell receptor. Adv Exp Med Biol, 640: 12–21
CrossRef Pubmed Google scholar
[14]
Brown B K, Song W (2001). The actin cytoskeleton is required for the trafficking of the B cell antigen receptor to the late endosomes. Traffic, 2(6): 414–427
CrossRef Pubmed Google scholar
[15]
Carpenter C L (2004). Btk-dependent regulation of phosphoinositide synthesis. Biochem Soc Trans, 32(Pt 2): 326–329
CrossRef Pubmed Google scholar
[16]
Carrasco Y R, Fleire S J, Cameron T, Dustin M L, Batista F D (2004). LFA-1/ICAM-1 interaction lowers the threshold of B cell activation by facilitating B cell adhesion and synapse formation. Immunity, 20(5): 589–599
CrossRef Pubmed Google scholar
[17]
Casten L A, Kaumaya P, Pierce S K (1988). Enhanced T cell responses to antigenic peptides targeted to B cell surface Ig, Ia, or class I molecules. J Exp Med, 168(1): 171–180
CrossRef Pubmed Google scholar
[18]
Collins A, Warrington A, Taylor K A, Svitkina T (2011). Structural organization of the actin cytoskeleton at sites of clathrin-mediated endocytosis. Curr Biol, 21(14): 1167–1175
CrossRef Pubmed Google scholar
[19]
Cory G O, Cramer R, Blanchoin L, Ridley A J (2003). Phosphorylation of the WASP-VCA domain increases its affinity for the Arp2/3 complex and enhances actin polymerization by WASP. Mol Cell, 11(5): 1229–1239
CrossRef Pubmed Google scholar
[20]
Cory G O, Garg R, Cramer R, Ridley A J (2002). Phosphorylation of tyrosine 291 enhances the ability of WASp to stimulate actin polymerization and filopodium formation. Wiskott-Aldrich Syndrome protein. J Biol Chem, 277(47): 45115–45121
CrossRef Pubmed Google scholar
[21]
Dal Porto J M, Gauld S B, Merrell K T, Mills D, Pugh-Bernard A E, Cambier J (2004). B cell antigen receptor signaling 101. Mol Immunol, 41(6-7): 599–613
CrossRef Pubmed Google scholar
[22]
Depoil D, Fleire S, Treanor B L, Weber M, Harwood N E, Marchbank K L, Tybulewicz V L, Batista F D (2008). CD19 is essential for B cell activation by promoting B cell receptor-antigen microcluster formation in response to membrane-bound ligand. Nat Immunol, 9(1): 63–72
CrossRef Pubmed Google scholar
[23]
Dustin M L (2008). T-cell activation through immunological synapses and kinapses. Immunol Rev, 221(1): 77–89
CrossRef Pubmed Google scholar
[24]
Engels N, König L M, Heemann C, Lutz J, Tsubata T, Griep S, Schrader V, Wienands J (2009). Recruitment of the cytoplasmic adaptor Grb2 to surface IgG and IgE provides antigen receptor-intrinsic costimulation to class-switched B cells. Nat Immunol, 10(9): 1018–1025
CrossRef Pubmed Google scholar
[25]
Etienne-Manneville S (2004). Cdc42—the centre of polarity. J Cell Sci, 117(Pt 8): 1291–1300
CrossRef Pubmed Google scholar
[26]
Fehon R G, McClatchey A I, Bretscher A (2010). Organizing the cell cortex: the role of ERM proteins. Nat Rev Mol Cell Biol, 11(4): 276–287
CrossRef Pubmed Google scholar
[27]
Fievet B T, Gautreau A, Roy C, Del Maestro L, Mangeat P, Louvard D, Arpin M (2004). Phosphoinositide binding and phosphorylation act sequentially in the activation mechanism of ezrin. J Cell Biol, 164(5): 653–659
CrossRef Pubmed Google scholar
[28]
Finkelstein L D, Schwartzberg P L (2004). Tec kinases: shaping T-cell activation through actin. Trends Cell Biol, 14(8): 443–451
CrossRef Pubmed Google scholar
[29]
Firat-Karalar E N, Welch M D (2011). New mechanisms and functions of actin nucleation. Curr Opin Cell Biol, 23(1): 4–13
CrossRef Pubmed Google scholar
[30]
Fleire S J, Goldman J P, Carrasco Y R, Weber M, Bray D, Batista F D (2006). B cell ligand discrimination through a spreading and contraction response. Science, 312(5774): 738–741
CrossRef Pubmed Google scholar
[31]
Freeman S A, Lei V, Dang-Lawson M, Mizuno K, Roskelley C D, Gold M R (2011). Cofilin-mediated F-actin severing is regulated by the Rap GTPase and controls the cytoskeletal dynamics that drive lymphocyte spreading and BCR microcluster formation. J Immunol, 187(11): 5887–5900
CrossRef Pubmed Google scholar
[32]
Fujimoto M, Poe J C, Satterthwaite A B, Wahl M I, Witte O N, Tedder T F (2002). Complementary roles for CD19 and Bruton’s tyrosine kinase in B lymphocyte signal transduction. J Immunol, 168(11): 5465–5476
Pubmed
[33]
Galletta B J, Mooren O L, Cooper J A (2010). Actin dynamics and endocytosis in yeast and mammals. Curr Opin Biotechnol, 21(5): 604–610
CrossRef Pubmed Google scholar
[34]
Gonzalez S F, Degn S E, Pitcher L A, Woodruff M, Heesters B A, Carroll M C (2011). Trafficking of B cell antigen in lymph nodes. Annu Rev Immunol, 29(1): 215–233
CrossRef Pubmed Google scholar
[35]
Gonzalez S F, Pitcher L A, Mempel T, Schuerpf F, Carroll M C (2009). B cell acquisition of antigen in vivo. Curr Opin Immunol, 21(3): 251–257
CrossRef Pubmed Google scholar
[36]
Guagliardi L E, Koppelman B, Blum J S, Marks M S, Cresswell P, Brodsky F M (1990). Co-localization of molecules involved in antigen processing and presentation in an early endocytic compartment. Nature, 343(6254): 133–139
CrossRef Pubmed Google scholar
[37]
Gupta N, Wollscheid B, Watts J D, Scheer B, Aebersold R, DeFranco A L (2006). Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics. Nat Immunol, 7(6): 625–633
CrossRef Pubmed Google scholar
[38]
Harder T, Scheiffele P, Verkade P, Simons K (1998). Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol, 141(4): 929–942
CrossRef Pubmed Google scholar
[39]
Hartwig J H, Jugloff L S, De Groot N J, Grupp S A, Jongstra-Bilen J (1995). The ligand-induced membrane IgM association with the cytoskeletal matrix of B cells is not mediated through the Ig alpha beta heterodimer. J Immunol, 155(8): 3769–3779
Pubmed
[40]
Harwood N E, Batista F D (2009). Visualizing the molecular and cellular events underlying the initiation of B-cell activation. Curr Top Microbiol Immunol, 334: 153–177
CrossRef Pubmed Google scholar
[41]
Harwood N E, Batista F D (2010). Early events in B cell activation. Annu Rev Immunol, 28(1): 185–210
CrossRef Pubmed Google scholar
[42]
Ilani T, Vasiliver-Shamis G, Vardhana S, Bretscher A, Dustin M L (2009). T cell antigen receptor signaling and immunological synapse stability require myosin IIA. Nat Immunol, 10(5): 531–539
CrossRef Pubmed Google scholar
[43]
Jugloff L S, Jongstra-Bilen J (1997). Cross-linking of the IgM receptor induces rapid translocation of IgM-associated Ig alpha, Lyn, and Syk tyrosine kinases to the membrane skeleton. J Immunol, 159(3): 1096–1106
Pubmed
[44]
Kumari S, Vardhana S, Cammer M, Curado S, Santos L, Sheetz M P, Dustin M L (2012). T Lymphocyte Myosin IIA is Required for Maturation of the Immunological Synapse. Front Immunol, 3: 230
CrossRef Pubmed Google scholar
[45]
Kurosaki T (2011). Regulation of BCR signaling. Mol Immunol, 48(11): 1287–1291
CrossRef Pubmed Google scholar
[46]
Kusumi A, Fujiwara T K, Chadda R, Xie M, Tsunoyama T A, Kalay Z, Kasai R S, Suzuki K G (2012a). Dynamic organizing principles of the plasma membrane that regulate signal transduction: commemorating the fortieth anniversary of Singer and Nicolson’s fluid-mosaic model. Annu Rev Cell Dev Biol, 28(1): 215–250
CrossRef Pubmed Google scholar
[47]
Kusumi A, Fujiwara T K, Morone N, Yoshida K J, Chadda R, Xie M, Kasai R S, Suzuki K G (2012b). Membrane mechanisms for signal transduction: the coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Semin Cell Dev Biol, 23(2): 126–144
CrossRef Pubmed Google scholar
[48]
Labno C M, Lewis C M, You D, Leung D W, Takesono A, Kamberos N, Seth A, Finkelstein L D, Rosen M K, Schwartzberg P L, Burkhardt J K (2003). Itk functions to control actin polymerization at the immune synapse through localized activation of Cdc42 and WASP. Curr Biol, 13(18): 1619–1624
CrossRef Pubmed Google scholar
[49]
Larbolette O, Wollscheid B, Schweikert J, Nielsen P J, Wienands J (1999). SH3P7 is a cytoskeleton adapter protein and is coupled to signal transduction from lymphocyte antigen receptors. Mol Cell Biol, 19(2): 1539–1546
Pubmed
[50]
Liu C, Miller H, Hui K L, Grooman B, Bolland S, Upadhyaya A, Song W (2011). A balance of Bruton’s tyrosine kinase and SHIP activation regulates B cell receptor cluster formation by controlling actin remodeling. J Immunol, 187(1): 230–239
CrossRef Pubmed Google scholar
[51]
Liu C, Miller H, Orlowski G, Hang H, Upadhyaya A, Song W (2012a). Actin reorganization is required for the formation of polarized B cell receptor signalosomes in response to both soluble and membrane-associated antigens. J Immunol, 188(7): 3237–3246
CrossRef Pubmed Google scholar
[52]
Liu C, Miller H, Sharma S, Beaven A, Upadhyaya A, Song W (2012b). Analyzing actin dynamics during the activation of the B cell receptor in live B cells. Biochem Biophys Res Commun, 427(1): 202–206
CrossRef Pubmed Google scholar
[53]
Liu W, Meckel T, Tolar P, Sohn H W, Pierce S K (2010a). Antigen affinity discrimination is an intrinsic function of the B cell receptor. J Exp Med, 207(5): 1095–1111
CrossRef Pubmed Google scholar
[54]
Liu W, Meckel T, Tolar P, Sohn H W, Pierce S K (2010b). Intrinsic properties of immunoglobulin IgG1 isotype-switched B cell receptors promote microclustering and the initiation of signaling. Immunity, 32(6): 778–789
CrossRef Pubmed Google scholar
[55]
Liu W, Won Sohn H, Tolar P, Meckel T, Pierce S K (2010c). Antigen-induced oligomerization of the B cell receptor is an early target of Fc gamma RIIB inhibition. J Immunol, 184(4): 1977–1989
CrossRef Pubmed Google scholar
[56]
Malhotra S, Kovats S, Zhang W, Coggeshall K M (2009a). B cell antigen receptor endocytosis and antigen presentation to T cells require Vav and dynamin. J Biol Chem, 284(36): 24088–24097
CrossRef Pubmed Google scholar
[57]
Malhotra S, Kovats S, Zhang W, Coggeshall K M (2009b). Vav and Rac activation in B cell antigen receptor endocytosis involves Vav recruitment to the adapter protein LAB. J Biol Chem, 284(52): 36202–36212
CrossRef Pubmed Google scholar
[58]
Mongini P K, Blessinger C A, Highet P F, Inman J K (1992). Membrane IgM-mediated signaling of human B cells. Effect of increased ligand binding site valency on the affinity and concentration requirements for inducing diverse stages of activation. J Immunol, 148(12): 3892–3901
Pubmed
[59]
Mooren O L, Galletta B J, Cooper J A (2012). Roles for actin assembly in endocytosis. Annu Rev Biochem, 81(1): 661–686
CrossRef Pubmed Google scholar
[60]
Natkanski E, Lee W Y, Mistry B, Casal A, Molloy J E, Tolar P (2013). B Cells Use Mechanical Energy to Discriminate Antigen Affinities. Science, 340(6140): 1587–1590
CrossRef Pubmed Google scholar
[61]
Neisch A L, Fehon R G (2011). Ezrin, Radixin and Moesin: key regulators of membrane-cortex interactions and signaling. Curr Opin Cell Biol, 23(4): 377–382
CrossRef Pubmed Google scholar
[62]
Niiro H, Clark E A (2002). Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol, 2(12): 945–956
CrossRef Pubmed Google scholar
[63]
O’Neill S K, Getahun A, Gauld S B, Merrell K T, Tamir I, Smith M J, Dal Porto J M, Li Q Z, Cambier J C (2011). Monophosphorylation of CD79a and CD79b ITAM motifs initiates a SHIP-1 phosphatase-mediated inhibitory signaling cascade required for B cell anergy. Immunity, 35(5): 746–756
CrossRef Pubmed Google scholar
[64]
Oltz E M (2001). Regulation of antigen receptor gene assembly in lymphocytes. Immunol Res, 23(2-3): 121–133
CrossRef Pubmed Google scholar
[65]
Onabajo O O, Seeley M K, Kale A, Qualmann B, Kessels M, Han J, Tan T H, Song W (2008). Actin-binding protein 1 regulates B cell receptor-mediated antigen processing and presentation in response to B cell receptor activation. J Immunol, 180(10): 6685–6695
Pubmed
[66]
Padrick S B, Rosen M K (2010). Physical mechanisms of signal integration by WASP family proteins. Annu Rev Biochem, 79(1): 707–735
CrossRef Pubmed Google scholar
[67]
Park J Y, Jongstra-Bilen J (1997). Interactions between membrane IgM and the cytoskeleton involve the cytoplasmic domain of the immunoglobulin receptor. Eur J Immunol, 27(11): 3001–3009
CrossRef Pubmed Google scholar
[68]
Pollard T D, Cooper J A (2009). Actin, a central player in cell shape and movement. Science, 326(5957): 1208–1212
CrossRef Pubmed Google scholar
[69]
Puré E, Tardelli L (1992). Tyrosine phosphorylation is required for ligand-induced internalization of the antigen receptor on B lymphocytes. Proc Natl Acad Sci USA, 89(1): 114–117
CrossRef Pubmed Google scholar
[70]
Reth M (1992). Antigen receptors on B lymphocytes. Annu Rev Immunol, 10(1): 97–121
CrossRef Pubmed Google scholar
[71]
Ridley A J (2011). Life at the leading edge. Cell, 145(7): 1012–1022
CrossRef Pubmed Google scholar
[72]
Saito K, Tolias K F, Saci A, Koon H B, Humphries L A, Scharenberg A, Rawlings D J, Kinet J P, Carpenter C L (2003). BTK regulates PtdIns-4,5-P2 synthesis: importance for calcium signaling and PI3K activity. Immunity, 19(5): 669–678
CrossRef Pubmed Google scholar
[73]
Schreiner G F, Fujiwara K, Pollard T D, Unanue E R (1977). Redistribution of myosin accompanying capping of surface Ig. J Exp Med, 145(5): 1393–1398
CrossRef Pubmed Google scholar
[74]
Schreiner G F, Unanue E R (1977). Capping and the lymphocyte: models for membrane reorganization. J Immunol, 119(5): 1549–1551
Pubmed
[75]
Sharma S, Orlowski G, Song W (2009). Btk regulates B cell receptor-mediated antigen processing and presentation by controlling actin cytoskeleton dynamics in B cells. J Immunol, 182(1): 329–339
Pubmed
[76]
Siemasko K, Clark M R (2001). The control and facilitation of MHC class II antigen processing by the BCR. Curr Opin Immunol, 13(1): 32–36
CrossRef Pubmed Google scholar
[77]
Simons P C, Pietromonaco S F, Reczek D, Bretscher A, Elias L (1998). C-terminal threonine phosphorylation activates ERM proteins to link the cell’s cortical lipid bilayer to the cytoskeleton. Biochem Biophys Res Commun, 253(3): 561–565
CrossRef Pubmed Google scholar
[78]
Sohn H W, Tolar P, Jin T, Pierce S K (2006). Fluorescence resonance energy transfer in living cells reveals dynamic membrane changes in the initiation of B cell signaling. Proc Natl Acad Sci USA, 103(21): 8143–8148
CrossRef Pubmed Google scholar
[79]
Sohn H W, Tolar P, Pierce S K (2008). Membrane heterogeneities in the formation of B cell receptor-Lyn kinase microclusters and the immune synapse. J Cell Biol, 182(2): 367–379
CrossRef Pubmed Google scholar
[80]
Song W, Cho H, Cheng P, Pierce S K (1995). Entry of B cell antigen receptor and antigen into class II peptide-loading compartment is independent of receptor cross-linking. J Immunol, 155(9): 4255–4263
Pubmed
[81]
Stoddart A, Dykstra M L, Brown B K, Song W, Pierce S K, Brodsky F M (2002). Lipid rafts unite signaling cascades with clathrin to regulate BCR internalization. Immunity, 17(4): 451–462
CrossRef Pubmed Google scholar
[82]
Stoddart A, Jackson A P, Brodsky F M (2005). Plasticity of B cell receptor internalization upon conditional depletion of clathrin. Mol Biol Cell, 16(5): 2339–2348
CrossRef Pubmed Google scholar
[83]
Stradal T E, Scita G (2006). Protein complexes regulating Arp2/3-mediated actin assembly. Curr Opin Cell Biol, 18(1): 4–10
CrossRef Pubmed Google scholar
[84]
Thrasher A J, Burns S O (2010). WASP: a key immunological multitasker. Nat Rev Immunol, 10(3): 182–192
CrossRef Pubmed Google scholar
[85]
Tolar P, Hanna J, Krueger P D, Pierce S K (2009a). The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. Immunity, 30(1): 44–55
CrossRef Pubmed Google scholar
[86]
Tolar P, Sohn H W, Liu W, Pierce S K (2009b). The molecular assembly and organization of signaling active B-cell receptor oligomers. Immunol Rev, 232(1): 34–41
CrossRef Pubmed Google scholar
[87]
Tolar P, Sohn H W, Pierce S K (2005). The initiation of antigen-induced B cell antigen receptor signaling viewed in living cells by fluorescence resonance energy transfer. Nat Immunol, 6(11): 1168–1176
CrossRef Pubmed Google scholar
[88]
Tolar P, Sohn H W, Pierce S K (2008). Viewing the antigen-induced initiation of B-cell activation in living cells. Immunol Rev, 221(1): 64–76
CrossRef Pubmed Google scholar
[89]
Treanor B, Depoil D, Bruckbauer A, Batista F D (2011). Dynamic cortical actin remodeling by ERM proteins controls BCR microcluster organization and integrity. J Exp Med, 208(5): 1055–1068
CrossRef Pubmed Google scholar
[90]
Treanor B, Depoil D, Gonzalez-Granja A, Barral P, Weber M, Dushek O, Bruckbauer A, Batista F D (2010). The membrane skeleton controls diffusion dynamics and signaling through the B cell receptor. Immunity, 32(2): 187–199
CrossRef Pubmed Google scholar
[91]
Unanue E R, Perkins W D, Karnovsky M J (1972). Ligand-induced movement of lymphocyte membrane macromolecules. I. Analysis by immunofluorescence and ultrastructural radioautography. J Exp Med, 136(4): 885–906
CrossRef Pubmed Google scholar
[92]
Van Troys M, Huyck L, Leyman S, Dhaese S, Vandekerkhove J, Ampe C (2008). Ins and outs of ADF/cofilin activity and regulation. Eur J Cell Biol, 87(8-9): 649–667
CrossRef Pubmed Google scholar
[93]
Vascotto F, Le Roux D, Lankar D, Faure-André G, Vargas P, Guermonprez P, Lennon-Duménil A M (2007). Antigen presentation by B lymphocytes: how receptor signaling directs membrane trafficking. Curr Opin Immunol, 19(1): 93–98
CrossRef Pubmed Google scholar
[94]
Vicente-Manzanares M, Ma X, Adelstein R S, Horwitz A R (2009). Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol, 10(11): 778–790
CrossRef Pubmed Google scholar
[95]
Weber M, Treanor B, Depoil D, Shinohara H, Harwood N E, Hikida M, Kurosaki T, Batista F D (2008). Phospholipase C-gamma2 and Vav cooperate within signaling microclusters to propagate B cell spreading in response to membrane-bound antigen. J Exp Med, 205(4): 853–868
CrossRef Pubmed Google scholar
[96]
Yang N, Higuchi O, Ohashi K, Nagata K, Wada A, Kangawa K, Nishida E, Mizuno K (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature, 393(6687): 809–812
CrossRef Pubmed Google scholar
[97]
Yokoyama N, Lougheed J, Miller W T (2005). Phosphorylation of WASP by the Cdc42-associated kinase ACK1: dual hydroxyamino acid specificity in a tyrosine kinase. J Biol Chem, 280(51): 42219–42226
CrossRef Pubmed Google scholar
[98]
Yuseff M I, Reversat A, Lankar D, Diaz J, Fanget I, Pierobon P, Randrian V, Larochette N, Vascotto F, Desdouets C, Jauffred B, Bellaiche Y, Gasman S, Darchen F, Desnos C, Lennon-Duménil A M (2011). Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. Immunity, 35(3): 361–374
CrossRef Pubmed Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(242 KB)

Accesses

Citations

Detail

Sections
Recommended

/