Integrative decomposition procedure and Kappa statistics set up ATF2 ion binding module in malignant pleural mesothelioma (MPM)

SUN Ying, WANG Lin, LIU Lei

PDF(361 KB)
PDF(361 KB)
Front. Electr. Electron. Eng. ›› 2008, Vol. 3 ›› Issue (4) : 381-387. DOI: 10.1007/s11460-008-0086-3

Integrative decomposition procedure and Kappa statistics set up ATF2 ion binding module in malignant pleural mesothelioma (MPM)

  • SUN Ying, WANG Lin, LIU Lei
Author information +
History +

Abstract

Activating transcription factor 2 (ATF2) is a member of the ATF/cyclic AMP-responsive element binding protein family of transcription factors. However, the information concerning ATF2 ion-mediated DNA binding module and function of ATF2 in malignant pleural mesothelioma (MPM) has never been addressed. In this study, by using GRNInfer and GVedit based on linear programming and a decomposition procedure, with integrated analysis of the function cluster using Kappa statistics and fuzzy heuristic clustering in MPM, we identified one ATF2 ion-mediated DNA binding module involved in invasive function including ATF2 inhibition to target genes FALZ, C20orf31, NME2, PLOD2, RNF10, and RNASEH1, upstream RNF10 and PLOD2 activation to ATF2, upstream RNASEH1 and FALZ inhibition to ATF2 from 40 MPM tumors and 5 normal pleural tissues. Remarkably, our results showed that the predominant effect of ATF2 occupancy is to suppress the activation of target genes on MPM. Importantly, the ATF2 ion-mediated DNA binding module reflects ‘mutual’ positive and negative feedback regulation mechanism of ATF2 with up-and down-stream genes. It may be useful for developing novel prognostic markers and therapeutic targets in MPM.

Cite this article

Download citation ▾
SUN Ying, WANG Lin, LIU Lei. Integrative decomposition procedure and Kappa statistics set up ATF2 ion binding module in malignant pleural mesothelioma (MPM). Front. Electr. Electron. Eng., 2008, 3(4): 381‒387 https://doi.org/10.1007/s11460-008-0086-3

References

1. Papassava P, Gorgoulis V G, Papaevangeliou D, et al.. Overexpression of activating transcription factor-2is required for tumor growth and progression in mouse skin tumors. Cancer Research, 2004, 64(23): 8573–8584. doi:10.1158/0008-5472.CAN-03-0955
2. Hayakawa J, Depatie C, Ohmichi M, et al.. The activation of c-Jun NH2-terminal kinase(JNK) by DNA-damaging agents serves to promote drug resistance viaactivating transcription factor 2 (ATF2)-dependent enhanced DNA repair. Journal of Biological Chemistry, 2003, 278(23): 20582–20592. doi:10.1074/jbc.M210992200
3. Hong S, Choi H M, Park M J, et al.. Activation and interaction of ATF2 with thecoactivator ASC-2 are responsive for granulocytic differentiationby retinoic acid. Journal of BiologicalChemistry, 2004, 279(17): 16996–17003. doi:10.1074/jbc.M311752200
4. Kravets A, Hu Z, Miralem T, et al.. Biliverdin reductase, a novel regulator forinduction of activating transcription factor-2 and heme oxygenase-1. Journal of Biological Chemistry, 2004, 279(19): 19916–19923. doi:10.1074/jbc.M314251200
5. Bailey J, Europe-Finner G N . Identification of human myometrialtarget genes of the c-Jun NH2-terminal kinase (JNK) pathway: the roleof activating transcription factor 2 (ATF2) and a novel spliced isoformATF2-small. Journal of Molecular Endocrinology, 2005, 34(1): 19–35. doi:10.1677/jme.1.01608
6. Shimizu M, Nomura Y, Suzuki H, et al.. Activation of the rat cyclin A promoter by ATF2and Jun family members and its suppression by ATF4. Experimental Cell Research, 1998, 239(1): 93–103. doi:10.1006/excr.1997.3884
7. Watanabe G, Howe A, Lee R. J, et al.. Induction of cyclin D1 by simian virus 40 smalltumor antigen. Proceedings of the NationalAcademy of Sciences of the United States of America, 1996, 93(23): 12861–12866. doi:10.1073/pnas.93.23.12861
8. Liang G, Wolfgang C D, Chen B P, et al.. ATF3 gene. Genomic organization, promoter, andregulation. Journal of Biological Chemistry, 1996, 271(3): 1695–1701. doi:10.1074/jbc.271.3.1695
9. Liu F, Green M R . A specific member of theATF transcription factor family can mediate transcription activationby the adenovirus E1a protein. Cell, 1990, 61(7): 1217–1224. doi:10.1016/0092-8674(90)90686-9
10. Kawasaki H, Schiltz L, Chiu R, et al.. ATF-2 has intrinsic histone acetyltransferaseactivity which is modulated by phosphorylation. Nature, 2000, 405(6783): 195–200. doi:10.1038/35012097
11. Bhoumik A, Takahashi S, Breitweiser W, et al.. ATM-dependent phosphorylation of ATF2 is requiredfor the DNA damage response. MolecularCell, 2005, 18(5): 577–587. doi:10.1016/j.molcel.2005.04.015
12. Bhattacharya S, Chaudhuri P . Metal-ion-mediated tuningof duplex DNA binding by bis(2-(2-pyridyl)-1H-benzimidazole). Chemistry, an Asian Journal, 2007, 2(5): 648–655. doi:10.1002/asia.200700014
13. Böhme D, Düpre N, Megger D A, et al.. Conformational change induced by metal-ion-bindingto DNA containing the artificial 1,2,4-triazole nucleoside. Inorganic Chemistry, 2007, 46(24): 10114–10119. doi:10.1021/ic700884q
14. Sugiyama K, Kageyama Y, Okamoto I, et al.. Preparation and metal ion-binding of 4-N-substitutedcytosine pairs in DNA duplexes. NucleicAcids Symposium Series (Oxf), 2007, (51): 177–178
15. Tusher V G, Tibshirani R, Chu G . Significance analysis of microarrays applied to the ionizingradiation response. Proceedings of theNational Academy of Sciences of the United States of America, 2001, 98(9): 5116–5121. doi:10.1073/pnas.091062498
16. Wang Y, Joshi T, Zhang X S, et al.. Inferring gene regulatory networks from multiplemicroarray datasets. Bioinformatics, 2006, 22(19): 2413–2420. doi:10.1093/bioinformatics/btl396
17. Dennis G Jr, Sherman B T, Hosack D A, et al.. DAVID: database for annotation, visualization,and integrated discovery. Genome Biology, 2003, 4(5): P3. doi: 10.1186/gb-2003-4-5-p3
18. Huang da W, Sherman B T, Tan Q, et al.. DAVID Bioinformatics Resources: expanded annotationdatabase and novel algorithms to better extract biology from largegene lists. Nucleic Acids Research, 2007, 35(Web Server issue): W169–175. doi:10.1093/nar/gkm415
19. Sangerman J, Lee M S, Yao X, et al.. Mechanism for fetal hemoglobin induction byhistone deacetylase inhibitors involves gamma-globin activation byCREB1 and ATF-2. Blood, 2006, 108(10): 3590–3599. doi:10.1182/blood-2006-01-023713
20. Colmone A, Li S, Wang C R . Activating transcription factor/cAMP response elementbinding protein family member regulated transcription of CD1A. Journal of immunology, 2006, 177(10): 7024–7032
21. Shen Y H, Zhang L, Gan Y, et al.. Up-regulation of PTEN (phosphatase and tensinhomolog deleted on chromosome ten) mediates p38 MAPK stress signal-inducedinhibition of insulin signaling. A cross-talk between stress signalingand insulin signaling in resistin-treated human endothelial cells. Journal of Biological Chemistry, 2006, 281(12): 7727–7736. doi:10.1074/jbc.M511105200
22. Zhang S, Liu H, Liu J, et al.. Activation of activating transcription factor2 by p38 MAP kinase during apoptosis induced by human amylin in culturedpancreatic beta-cells. FEBS Journal, 2006, 273(16): 3779–3791. doi:10.1111/j.1742-4658.2006.05386.x
23. Renné C, Martin-Subero J I, Eickernjäger M., et al.. Aberrant expression of ID2,a suppressor of B-cell-specific gene expression, in Hodgkin's lymphoma. The American Journal of Pathology, 2006, 169(2): 655–664. doi:10.2353/ajpath.2006.060020
24. Mikami S, Hirose Y, Yoshida K, et al.. Predominant expression of OLIG2 over ID2 inoligodendroglial tumors. Virchows Archiv:an International Journal of Pathology, 2007, 450(5): 575–584. doi:10.1007/s00428-007-0394-7
25. Nakamichi I, Hatakeyama S, Nakayama K I . Formation of Mallory body-like inclusions and cell deathinduced by deregulated expression of keratin 18. Molecular Biology of the Cell, 2002, 13(10): 3441–3451. doi:10.1091/mbc.01-10-0510
PDF(361 KB)

Accesses

Citations

Detail

Sections
Recommended

/