Please wait a minute...
 首页  期刊列表 期刊订阅 开放获取 关于我们
English
最新录用  |  在线预览  |  当期目录  |  过刊浏览  |  专题文章  |  热点文章  |  下载排行
  期刊介绍
    » 出版范围
    » 简介
    » 编委会
    » 数据库收录
    » 联系我们
  作者中心
    » 在线投稿
    » 作者指南
    » 模板下载
    » 作者常见问题
  审稿中心
    » 审稿指南
    » 在线审稿
    » 推荐审稿人
    » 致谢
  新闻公告 更多  
» Invitation to Contribute to the Special Issue on “Nanomedicine: principles, properties and applications” in Frontiers of Chemical Science and Engineering
  2020-09-21
» Frontiers of Chemical Science and Engineering is indexed in SCIE
  2015-06-18
» Prof. Dr. John C. Crittenden is appointed as the Executive Associate Editor-in-Chief
  2014-11-01
ISSN 2095-0179 (Print)
ISSN 2095-0187 (Online)
CN 11-5981/TQ
Postal Subscription Code 80-969
Formerly Known as Frontiers of Chemical Science and Engineering in China
2018 Impact Factor: 2.809
  • 2024年, 第18卷 第7期 出版日期:2024-06-15
    选择: 合并摘要 显示/隐藏图片
    Siliceous mesocellular foam supported Cu catalysts for promoting non-thermal plasma activated CO2 hydrogenation toward methanol synthesis
    Yi Chen, Shaowei Chen, Yan Shao, Cui Quan, Ningbo Gao, Xiaolei Fan, Huanhao Chen
    Frontiers of Chemical Science and Engineering. 2024, 18 (7): 77-.   https://doi.org/10.1007/s11705-024-2419-z
    摘要   HTML   PDF (1024KB)

    Electrified non-thermal plasma (NTP) catalytic hydrogenation is the promising alternative to the thermal counterparts, being able to be operated under mild conditions and compatible with green electricity/hydrogen. Rational design of the catalysts for such NTP-catalytic systems is one of the keys to improve the process efficiency. Here, we present the development of siliceous mesocellular foam (MCF) supported Cu catalysts for NTP-catalytic CO2 hydrogenation to methanol. The findings show that the pristine MCF support with high specific surface area and large mesopore of 784 m2·g−1 and ~8.5 nm could promote the plasma discharging and the diffusion of species through its framework, outperforming other control porous materials (viz., silicalite-1, SiO2, and SBA-15). Compared to the NTP system employing the bare MCF, the inclusion of Cu and Zn in MCF (i.e., Cu1Zn1/MCF) promoted the methanol formation of the NTP-catalytic system with a higher space-time yield of methanol at ~275 μmol·gcat−1·h−1 and a lower energy consumption of 26.4 kJ·mmolCH3OH−1 (conversely, ~225 μmol·gcat−1·h−1 and ~71 kJ·mmolCH3OH−1, respectively, for the bare MCF system at 10.1 kV). The findings suggest that inclusion of active metal sites (especially Zn species) could stabilize the CO2/CO-related intermediates to facilitate the surface reaction toward methanol formation.

    图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
    Methane cracking in molten tin for hydrogen and carbon production—a comparison with homogeneous gas phase process
    Emmanuel Busillo, Benedetta de Caprariis, Maria Paola Bracciale, Vittoria Cosentino, Martina Damizia, Gaetano Iaquaniello, Emma Palo, Paolo De Filippis
    Frontiers of Chemical Science and Engineering. 2024, 18 (7): 82-.   https://doi.org/10.1007/s11705-024-2437-x
    摘要   HTML   PDF (8283KB)

    Methane cracking is considered a bridge technology between gray and green hydrogen production processes. In this work an experimental study of methane cracking in molten tin is performed. The tests were conducted in a quartz reactor (i.d. = 1.5 cm, L = 20 cm) with capillary injection, varying temperature (950–1070 °C), inlet methane flow rate (30–60 mL·min–1) and tin height (0–20 cm). The influence of the residence time in the tin and in the headspace on methane conversion and on carbon morphology was investigated. The conversions obtained in tin and in the empty reactor were measured and compared with results of detailed kinetic simulations (CRECK). Furthermore, an expression of a global kinetic constant for methane conversion in tin was also derived. The highest conversion (65% at Q0 = 30 mL·min–1 and t = 1070 °C) is obtained for homogeneous gas phase reaction due to the long residence time (70 s), the presence of tin leads to a sharp decrease of residence time (1 s), obtaining a conversion of 35% at 1070 °C, thus meaning that tin owns a role in the reaction. Carbon characterization (scanning electron microscopy, Raman) reported a change in carbon toward sheet-like structures and an increase of the carbon structural order in the presence of molten tin media.

    图表 | 参考文献 | 补充材料 | 相关文章 | 多维度评价
    2 articles







  友情链接 更多  




版权所有 © 2015 高等教育出版社.
电话: 010-58556848 (技术); 010-58556485 (订阅) E-mail: subscribe@hep.com.cn