Theoretical study on the hydration of hydrogen peroxide in terms of ab initio method and atom-bond electronegativity equalization method fused into molecular mechanics

Chunyang YU, Lidong GONG, Zhongzhi YANG

PDF(537 KB)
PDF(537 KB)
Front. Chem. China ›› 2011, Vol. 6 ›› Issue (4) : 287-299. DOI: 10.1007/s11458-011-0259-0
RESEARCH ARTICLE

Theoretical study on the hydration of hydrogen peroxide in terms of ab initio method and atom-bond electronegativity equalization method fused into molecular mechanics

Author information +
History +

Abstract

In this paper, the interaction between hydrogen peroxide (HP) and water were systemically studied by atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM) and ab initio method. The results show that the optimized geometries, interaction energies and dipole moments of hydrated HP clusters HP(H2O)n (n = 1–6) calculated by ABEEM/MM model are fairly consistent with the MP2/aug-cc-pVTZ//MP2/aug-cc-pVDZ results. The ABEEM/MM results indicate that n = 4 is the transition state structure from 2D planar structure to 3D network structure. The variations of the average hydrogen bond length with the increasing number of water molecules given by ABEEM/MM model agree well with those of ab initio studies. Moreover, the radial distribution functions (RDFs) of water molecule around HP in HP aqueous solution have been analyzed in detail. It can be confirmed that HP is a good proton donor and poor proton acceptor in aqueous solution by analysis of the RDFs.

Keywords

ABEEM/MM model / ab initio calculation / hydrogen peroxide / water

Cite this article

Download citation ▾
Chunyang YU, Lidong GONG, Zhongzhi YANG. Theoretical study on the hydration of hydrogen peroxide in terms of ab initio method and atom-bond electronegativity equalization method fused into molecular mechanics. Front Chem Chin, 2011, 6(4): 287‒299 https://doi.org/10.1007/s11458-011-0259-0

References

[1]
Baalen,C. V.; Marler,J. E., Nature1966, 211, 951
CrossRef Google scholar
[2]
Robbinmartin,L.; Damschen,D., Atmospheric Environment (1967)1981, 15, 1615-1621
CrossRef Google scholar
[3]
Hoffmann,M. R.; Edwards,J. O., J. Phys. Chem.1975, 79, 2096-2098
CrossRef Google scholar
[4]
McArdle,J. V.; Hoffmann,M. R., J. Phys. Chem.1983, 87, 5425-5429
CrossRef Google scholar
[5]
Reeves,C. E.; Penkett,S. A., Chem. Rev.2003, 103, 5199-5218
CrossRef Pubmed Google scholar
[6]
Pascual,L. M.; Daniele,M. B.; Pájaro,C.; Barberis,L., Contraception2006, 73, 78-81
CrossRef Pubmed Google scholar
[7]
Katsinelos,P.; Kountouras,J.; Paroutoglou,G.; Beltsis,A.; Mimidis,K.; Pilpilidis,I.; Zavos,C., Eur. J. Gastroenterol. Hepatol.2006, 18, 107-110
CrossRef Pubmed Google scholar
[8]
Shigematsu,M.; Kitajima,M.; Ogawa,K.; Higo,T.; Hotokebuchi,T., J. Arthroplasty2005, 20, 639-646
CrossRef Pubmed Google scholar
[9]
Kunen,S. M.; Lazrus,A. L.; Kok,G. L.; Heikes,B. G., J. Geophys. Res.1983, 88, 3671-3674
CrossRef Google scholar
[10]
McArdle,J. V.; Hoffmann,M. R., J. Chem. Phys.1983, 87, 5425-5429
CrossRef Google scholar
[11]
Varma,S. D.; Devamanoharan,P. S., Free Radic. Res. Commun.1991, 14, 125-131
CrossRef Pubmed Google scholar
[12]
Sennikov,P. G.; Ignatov,S. K.; Schrems,O., ChemPhysChem2005, 6, 392-412
CrossRef Pubmed Google scholar
[13]
Du,D.; Fu,A.; Zhou,Z. y., J. Mol. Struct. THEOCHEM2005, 717, 127-132
CrossRef Google scholar
[14]
Kulkarni,A. D.; Pathak,R. K.; Bartolotti,L. J., J. Phys. Chem. A2005, 109, 4583-4590
CrossRef Pubmed Google scholar
[15]
Kulkarni,A. D.; Pathak,R. K.; Bartolotti,L. J., J. Chem. Phys.2006, 124, 214309
CrossRef Pubmed Google scholar
[16]
Ju,X. H.; Xiao,J. J.; Xiao,H. M., J. Mol. Struct. THEOCHEM2003, 626, 231-238
CrossRef Google scholar
[17]
Dobado,J. A.; Molina,J. M., J. Phys. Chem.1994, 98, 1819-1825
CrossRef Google scholar
[18]
González,L.; Mó,O.; Yáñez,M., J. Comput. Chem.1997, 18, 1124-1135
CrossRef Google scholar
[19]
Mó,O.; Yáñez,M.; Rozas,I.; Elguero,J., Chem. Phys. Lett.1994, 219, 45-52
CrossRef Google scholar
[20]
Ferreira,C.; Martiniano,H. F. M. C.; Cabral,B. J. C.; Aquilanti,V., Int. J. Quantum Chem.2011, 111, 1824-1835
CrossRef Google scholar
[21]
Ignatov,S. K.; Sennikov,P. G.; Jacobi,H. W.; Razuvaev,A. G.; Schrems,O., Phys. Chem. Chem. Phys.2003, 5, 496-505
CrossRef Google scholar
[22]
Akiya,N.; Savage,P. E., J. Phys. Chem. A2000, 104, 4433-4440
CrossRef Google scholar
[23]
Vácha,R.; Slavíček,P.; Mucha,M.; Finlayson-Pitts,B. J.; Jungwirth,P., J. Phys. Chem. A2004, 108, 11573-11579
CrossRef Google scholar
[24]
Martins-Costa,M. T. C.; Ruiz-López,M. F., Chem. Phys.2007, 332, 341-347
CrossRef Google scholar
[25]
Mortier,W. J.; Ghosh,S. K.; Shankar,S., J. Am. Chem. Soc.1986, 108, 4315-4320
CrossRef Google scholar
[26]
Rappe,A. K.; Goddard,W. A., J. Phys. Chem.1991, 95, 3358-3363
CrossRef Google scholar
[27]
Nalewajski,R. F., Int. J. Quantum Chem.1992, 42, 243-265
CrossRef Google scholar
[28]
Rick,S. W.; Stuart,S. J.; Berne,B. J., J. Chem. Phys.1994, 101, 6141-6156
CrossRef Google scholar
[29]
York,D. M.; Yang,W., J. Chem. Phys.1996, 104, 159-172
CrossRef Google scholar
[30]
Itskowitz,P.; Berkowitz,M. L., J. Phys. Chem. A1997, 101, 5687-5691
CrossRef Google scholar
[31]
Liu,Y. P.; Kim,K.; Berne,B. J.; Friesner,R. A.; Rick,S. W., J. Chem. Phys.1998, 108, 4739-4755
CrossRef Google scholar
[32]
Banks,J. L.; Kaminski,G. A.; Zhou,R.; Mainz,D. T.; Berne,B. J.; Friesner,R. A., J. Chem. Phys.1999, 110, 741-754
CrossRef Google scholar
[33]
Chelli,R.; Ciabatti,S.; Cardini,G.; Righini,R.; Procacci,P., J. Chem. Phys.1999, 111, 4218-4229
CrossRef Google scholar
[34]
Chelli,R.; Procacci,P.; Righini,R.; Califano,S., J. Chem. Phys.1981, 111, 8569-8575
CrossRef Google scholar
[35]
Chelli,R.; Procacci,P., J. Chem. Phys.2002, 117, 9175-9199
CrossRef Google scholar
[36]
Tabacchi,G.; Mundy,C. J.; Hutter,J.; Parrinello,M., J. Chem. Phys.2002, 117, 1416-1433
CrossRef Google scholar
[37]
Patel,S.; Brooks,C. L. 3rd, J Comput Chem2004, 25, 1-15
CrossRef Pubmed Google scholar
[38]
Chelli,R.; Barducci,A.; Bellucci,L.; Schettino,V.; Procacci,P., J. Chem. Phys.2005, 123, 194109
CrossRef Pubmed Google scholar
[39]
Chelli,R.; Pagliai,M.; Procacci,P.; Cardini,G.; Schettino,V., J. Chem. Phys.2005, 122, 074504
CrossRef Pubmed Google scholar
[40]
Chelli,R.; Schettino,V.; Procacci,P., J. Chem. Phys.2005, 122, 234107
CrossRef Pubmed Google scholar
[41]
Ishida,T.; Morita,A., J. Chem. Phys.2006, 125, 074112
CrossRef Pubmed Google scholar
[42]
Piquemal,J. P.; Chelli,R.; Procacci,P.; Gresh,N., J. Phys. Chem. A2007, 111, 8170-8176
CrossRef Pubmed Google scholar
[43]
Lee Warren,G.; Davis,J. E.; Patel,S., J Chem Phys2008, 128, 144110.-144123
CrossRef Pubmed Google scholar
[44]
Zhong,Y.; Patel,S., J. Phys. Chem. B2010, 114, 11076-11092
CrossRef Pubmed Google scholar
[45]
Yang,Z. Z.; Wang,C. S., J. Phys. Chem. A1997, 101, 6315-6321
CrossRef Google scholar
[46]
Wang,C. S.; Yang,Z. Z., J. Chem. Phys.1999, 110, 6189-6197
CrossRef Google scholar
[47]
Cong,Y.; Yang,Z. Z., Chem. Phys. Lett.2000, 316, 324-329
CrossRef Google scholar
[48]
Wu,Y.; Yang,Z. Z., J. Phys. Chem. A2004, 108, 7563-7576
CrossRef Google scholar
[49]
Yang,Z. Z.; Wu,Y.; Zhao,D. X., J. Chem. Phys.2004, 120, 2541-2557
CrossRef Pubmed Google scholar
[50]
Li,X.; Yang,Z. Z., J. Phys. Chem. A2005, 109, 4102-4111
CrossRef Pubmed Google scholar
[51]
Li,X.; Yang,Z. Z., J. Chem. Phys.2005, 122, 084514
CrossRef Google scholar
[52]
Yang,Z. Z.; Li,X., J. Phys. Chem. A2005, 109, 3517-3520
CrossRef Pubmed Google scholar
[53]
Zhang,Q.; Yang,Z. Z., Chem. Phys. Lett.2005, 403, 242-247
CrossRef Google scholar
[54]
Yang,Z. Z.; Zhang,Q., J. Comput. Chem.2006, 27, 1-10
CrossRef Pubmed Google scholar
[55]
Wang,F. F.; Gong,L. D.; Zhao,D. X., J. Mol. Struct. THEOCHEM2009, 909, 49-56
CrossRef Google scholar
[56]
Wang,F. F.; Zhao,D. X.; Gong,L. D., Theor. Chem. Acc.2009, 124, 139-150
CrossRef Google scholar
[57]
Wang,F. F.; Zhao,D. X.; Yang,Z. Z., Chem. Phys.2009, 360, 141-149
CrossRef Google scholar
[58]
Zhao,D. X.; Liu,C.; Wang,F. F.; Yu,C. Y.; Gong,L. D.; Liu,S. B.; Yang,Z. Z., J. Chem. Theory Comput.2010, 6, 795-804
CrossRef Google scholar
[59]
Yu,C. Y.; Yang,Z. Z., J. Phys. Chem. A2011, 115, 2615-2626
CrossRef Pubmed Google scholar
[60]
Frisch,M. J.; Trucks,G. W.; Schlegel,H. B.; Scuseria,G. E.; Robb,M. A.; Cheeseman,J. R.; Montgomery,J. A. J.; Vreven,T.; Kudin,K. N.; Burant,J. C.; Millam,J. M.; Iyengar,S. S.; Tomasi,J.; Barone,V.; Mennucci,B.; Cossi,M.; Scalmani,G.; Rega,N.; Petersson,G. A.; Nakatsuji,H.; Hada,M.; Ehara,M.; Toyota,K.; Fukuda,R.; Hasegawa,J.; Ishida,M.; Nakajima,T.; Honda,Y.; Kitao,O.; Nakai,H.; Klene,M.; Li,X.; Knox,J. E.; Hratchian,H. P.; Cross,J. B.; Adamo,C.; Jaramillo,J.; Gomperts,R.; Stratmann,R. E.; Yazyev,O.; Austin,A. J.; Cammi,R.; Pomelli,C.; Ochterski,J. W.; Ayala,P. Y.; Morokuma,K.; Voth,G. A.; Salvador,P.; Dannenberg,J. J.; Zakrzewski,V. G.; Dapprich,S.; Daniels,A. D.; Strain,M. C.; Farkas,O.; Malick,D. K.; Rabuck,A. D.; Raghavachari,K.; Foresman,J. B.; Ortiz,J. V.; Cui,Q.; Baboul,A. G.; Clifford,S.; Cioslowski,J.; Stefanov,B. B.; Liu,G.; Liashenko,A.; Piskorz,P.; Komaromi,I.; Martin,R. L.; Fox,D. J.; Keith,T.; Al-Laham,M. A.; Peng,C. Y.; Nanayakkara,A.; Challacombe,M.; Gill,P. M. W.; Johnson,B.; Chen,W.; Wong,M. W.; Gonzalez,C.; Pople,J. A.; Revision D.01 ed.; Gaussian, Inc.: Wallingford, CT, 2004.
[61]
Boys,S. F.; Bernardi,F., Mol. Phys.1970, 19, 553-566
CrossRef Google scholar
[62]
Wang,C. S.; Li,S. M.; Yang,Z. Z., J. Mol. Struct. THEOCHEM1998, 430, 191-199
CrossRef Google scholar
[63]
Steinbach,P. J.; Brooks,B. R., J. Comput. Chem.1994, 15, 667-683
CrossRef Google scholar
[64]
Kurinovich,M. A.; Lee,J. K., J. Am. Chem. Soc.2000, 122, 6258-6262
CrossRef Google scholar

Acknowledgements

The authors greatly thank Professor Jay William Ponder for providing the Tinker programs. This work was supported by the grant from the National Natural Science Foundation of China (Nos. 21133005 and 20703022) and the Foundation of Education Bureau of Liaoning Province of China (No. 2009T057).
Supplementary materials

Table S1. The charge distribution of H2O2(H2O)2

W2-cyclic-AW2-cyclic-BW2-cyclic-CW2-cyclic-AW2-cyclic-BW2-cyclic-C
qO10.02420.02330.0231qOw5-Hw6-0.1452-0.1464-0.1452
qH20.38010.37580.3749qOw5-Hw7-0.1508-0.1496-0.1510
qO30.02140.02270.0232qOw8-Hw9-0.1501-0.1506-0.1495
qH40.33140.33260.3325qOw8-Hw10-0.1462-0.1451-0.1462
qOw50.10240.10320.1020qlpO1-0.1513-0.1556-0.1636
qHw60.41160.38050.4083qlpO1’-0.1552-0.1621-0.1561
qHw70.26670.28710.2646qlpO3-0.1691-0.1554-0.1559
qOw80.10340.10170.1028qlpO3′-0.1577-0.1563-0.1539
qHw90.27990.26730.2846qlpOw5-0.2649-0.2034-0.2678
qHw100.39080.40820.3822qlpOw5′-0.2198-0.2714-0.2109
qO1-H2-0.0434-0.0430-0.0430qlpOw8-0.2696-0.2157-0.2665
qO1-O3-0.0388-0.0404-0.0397qlpOw8’-0.2081-0.2658-0.2073
qO3-H4-0.0419-0.0415-0.0415

Table S2. The charge distribution of H2O2(H2O)3

W3-cyclic-AW3-cyclic-BW3-cyclic-CW3-cyclic-D
qO10.02190.02200.02270.0229
qH20.38060.37970.38170.3825
qO30.02250.02250.02280.0223
qH40.33060.33080.33180.3325
qOw50.10320.10320.10270.1029
qHw60.44790.44810.43150.4222
qHw70.24590.24720.25670.2651
qOw80.10660.10650.10480.1044
qHw90.26240.26310.26240.2617
qHw100.44960.44850.42880.4283
qOw110.10470.10460.10380.1042
qHw120.29890.29720.28100.2819
qHw130.38820.38780.40220.4019
qO1-H2-0.0432-0.0431-0.0435-0.0435
qO1-O3-0.0418-0.0419-0.0411-0.0418
qO3-H4-0.0416-0.0416-0.0416-0.0417
qOw5-Hw6-0.1437-0.1438-0.1437-0.1449
qOw5-Hw7-0.1529-0.1527-0.1518-0.1512
qOw8-Hw9-0.1526-0.1525-0.1521-0.1518
qOw8-Hw10-0.1444-0.1446-0.1451-0.1444
qOw11-Hw12-0.1493-0.1493-0.1502-0.1504
qOw11-Hw13-0.1443-0.1444-0.1455-0.1459
qlpO1-0.1599-0.1599-0.1655-0.1645
qlpO1’-0.1568-0.1568-0.1565-0.1557
qlpO3-0.1561-0.1558-0.1555-0.1560
qlpO3′-0.1563-0.1562-0.1554-0.1571
qlpOw5-0.2788-0.2244-0.2250-0.2273
qlpOw5′-0.2216-0.2775-0.2704-0.2668
qlpOw8-0.2895-0.2328-0.2146-0.2771
qlpOw8’-0.2320-0.2883-0.2843-0.2212
qlpOw11-0.2180-0.2187-0.2684-0.2142
qlpOw11’-0.2802-0.2772-0.2228-0.2776

Table S3. The charge distribution of H2O2(H2O)4

W4-cyclic-AW4-cyclic-BW4-open-CW4-prism-D
qO10.02160.02160.02200.0222
qH20.38170.38170.38270.3843
qO30.02240.02240.02200.0223
qH40.33200.33210.33280.3340
qOw50.10360.10300.10180.1046
qHw60.29720.44680.29050.3426
qHw70.38590.24830.36700.3658
qOw80.10500.10530.10610.1033
qHw90.26200.25920.40900.3590
qHw100.44350.44850.30480.3140
qOw110.10530.10500.10510.1069
qHw120.44840.26190.45730.2754
qHw130.25930.44360.25250.4323
qOw140.10300.10360.10330.1027
qHw150.44680.38580.24980.3800
qHw160.24830.29740.44720.2947
qO1-H2-0.0433-0.0433-0.0432-0.0431
qO1-O3-0.0425-0.0425-0.0415-0.0414
qO3-H4-0.0417-0.0417-0.0417-0.0417
qOw5-Hw6-0.1493-0.1429-0.1487-0.1500
qOw5-Hw7-0.1443-0.1527-0.1448-0.1491
qOw8-Hw9-0.1523-0.1526-0.1463-0.1486
qOw8-Hw10-0.1435-0.1434-0.1507-0.1506
qOw11-Hw12-0.1434-0.1523-0.1429-0.1516
qOw11-Hw13-0.1526-0.1435-0.1528-0.1446
qOw14-Hw15-0.1429-0.1443-0.1526-0.1444
qOw14-Hw16-0.1527-0.1493-0.1431-0.1490
qlpO1-0.1569-0.1611-0.1569-0.1602
qlpO1’-0.1611-0.1569-0.1610-0.1560
qlpO3-0.1567-0.1556-0.1574-0.1638
qlpO3′-0.1556-0.1567-0.1577-0.1565
qlpOw5-0.2862-0.2216-0.2673-0.2903
qlpOw5′-0.2069-0.2809-0.1987-0.2236
qlpOw8-0.2213-0.2205-0.2201-0.2647
qlpOw8’-0.2933-0.2965-0.3027-0.2125
qlpOw11-0.2205-0.2935-0.2260-0.2579
qlpOw11’-0.2964-0.2212-0.2932-0.2604
qlpOw14-0.2809-0.2863-0.2244-0.2775
qlpOw14’-0.2216-0.2069-0.2802-0.2066

Table S4. The charge distribution of H2O2(H2O)5

W5-prism-AW5-prism-CW5-prism-AW5-prism-C
qO10.02200.0231qOw5-Hw7-0.1470-0.1485
qH20.33140.3910qOw8-Hw9-0.1511-0.1507
qO30.02290.0211qOw8-Hw10-0.1459-0.1495
qH40.37910.3312qOw11-Hw12-0.1543-0.1500
qOw50.10320.1055qOw11-Hw13-0.1433-0.1521
qHw60.30280.3872qOw14-Hw15-0.1516-0.1444
qHw70.39010.3375qOw14-Hw16-0.1456-0.1486
qOw80.10480.1047qOw17-Hw18-0.1475-0.1480
qHw90.27390.3490qOw17-Hw19-0.1500-0.1502
qHw100.41670.3437qlpO1-0.1583-0.1469
qOw110.11140.1067qlpO1’-0.1578-0.1579
qHw120.26420.2672qlpO3-0.1585-0.1555
qHw130.49890.4381qlpO3′-0.1563-0.1587
qOw140.10840.1050qlpOw5-0.2203-0.1693
qHw150.30740.3281qlpOw5′-0.2787-0.2328
qHw160.43370.3744qlpOw8-0.2322-0.2982
qOw170.10500.1067qlpOw8’-0.2661-0.2171
qHw180.38640.2975qlpOw11-0.2844-0.2809
qHw190.31440.4017qlpOw11’-0.2925-0.2564
qO1-H2-0.0417-0.0431qlpOw14-0.3295-0.2590
qO1-O3-0.0400-0.0404qlpOw14’-0.2228-0.2948
qO3-H4-0.0430-0.0416qlpOw17-0.2156-0.2161
qOw5-Hw6-0.15000.0231qlpOw17’-0.2926-0.2577

Table S5. The charge distribution of H2O2(H2O)6

W6-cage-AW6-cage-EW6-cage-AW6-cage-E
qO10.01860.0227qOw8-Hw9-0.1469-0.1504
qH20.36300.3916qOw8-Hw10-0.1505-0.1494
qO30.02300.0206qOw11-Hw12-0.1461-0.1522
qH40.36750.3289qOw11-Hw13-0.1504-0.1445
qOw50.10920.1053qOw14-Hw15-0.1513-0.1513
qHw60.30260.3678qOw14-Hw16-0.1444-0.1484
qHw70.43090.3358qOw17-Hw18-0.1438-0.1437
qOw80.10610.1065qOw17-Hw19-0.1532-0.1521
qHw90.40310.3476qOw20-Hw21-0.1496-0.1489
qHw100.31100.3734qOw20-Hw22-0.1496-0.1456
qOw110.10380.1081qlpO1-0.1619-0.1562
qHw120.40150.2745qlpO1’-0.1710-0.1595
qHw130.28020.4466qlpO3-0.1564-0.1643
qOw140.10180.1061qlpO3′-0.1550-0.1578
qHw150.26100.3422qlpOw5-0.2772-0.2985
qHw160.41330.3909qlpOw5′-0.2705-0.2136
qOw170.10890.1038qlpOw8-0.2153-0.3004
qHw180.46520.4347qlpOw8’-0.3076-0.2273
qHw190.26810.2518qlpOw11-0.2277-0.2697
qOw200.10380.1056qlpOw11’-0.2615-0.2628
qHw210.35110.3071qlpOw14-0.2661-0.2387
qHw220.35170.3807qlpOw14’-0.2142-0.3009
qO1-H2-0.0427-0.0431qlpOw17-0.2784-0.2207
qO1-O3-0.0425-0.0411qlpOw17’-0.2667-0.2738
qO3-H4-0.0427-0.0417qlpOw20-0.2266-0.2468
qOw5-Hw6-0.1510-0.1485qlpOw20’-0.2807-0.2521
qOw5-Hw7-0.1440-0.1482

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
PDF(537 KB)

Accesses

Citations

Detail

Sections
Recommended

/