Surface-enhanced Raman scattering spatial fingerprinting decodes the digestion behavior of lysosomes in live single cells

Fugang Liu, Zhirui Sun, Bingyi Li, Jiaqing Liu, Zhou Chen, Jian Ye

PDF
VIEW ›› 2024, Vol. 5 ›› Issue (3) : 20240004. DOI: 10.1002/VIW.20240004
RESEARCH ARTICLE

Surface-enhanced Raman scattering spatial fingerprinting decodes the digestion behavior of lysosomes in live single cells

Author information +
History +

Abstract

Lysosome, the digestive organelle in eukaryotic cells, plays an important role in the degradation and recirculation of cellular products as well as in maintaining the stability of cellular metabolic microenvironment. Surface-enhanced Raman scattering (SERS) is a molecular fingerprint technology with high detection sensitivity and photostability, suited for revealing various intracellular molecular information by inducing endocytosis of SERS-active nanoparticles. However, it remains challenging to selectively extract the molecular information of specific organelles (e.g., lysosomes) from a high-dimensional spectral set. Herein, we proposed a novel paradigm by combining label-free SERS spectroscopy with confocal fluorescence imaging to investigate the digestion behavior of lysosomes in cells. The structural similarity algorithm was innovatively introduced and exhibited its effectiveness in screening out the wavenumbers in the SERS spectral set with high correlation with the metabolic behaviors of lysosomes. With comprehensive experiments on HeLa single cells, we captured the intracellularmacromolecular digestion phenomenon and discovered the changing pattern of cellular SERS spectra after starvation-induced autophagy, and analyzed the molecular information within the lysosomes in three-dimensional space.

Keywords

lysosomal digestion / nanoparticles / structural similarity / surface-enhanced Raman scattering

Cite this article

Download citation ▾
Fugang Liu, Zhirui Sun, Bingyi Li, Jiaqing Liu, Zhou Chen, Jian Ye. Surface-enhanced Raman scattering spatial fingerprinting decodes the digestion behavior of lysosomes in live single cells. VIEW, 2024, 5(3): 20240004 https://doi.org/10.1002/VIW.20240004

References

[1]
M. Hu, J. Chen, S. Liu, H. Xu, Autophagy 2023, 19, 1368.
CrossRef Google scholar
[2]
J. Debnath, N. Gammoh, K. M. Ryan, Nat. Rev. Mol. Cell Biol. 2023, 24, 560.
CrossRef Google scholar
[3]
N. Mizushima, T. Yoshimori, B. Levine, Cell 2010, 140, 313.
CrossRef Google scholar
[4]
J. M. Swanlund, K. C. Kregel, T. D. Oberley, Autophagy 2010, 6, 270.
CrossRef Google scholar
[5]
I. Tanida, N. Minematsu-Ikeguchi, T. Ueno, E. Kominami, Autophagy 2005, 1, 84.
CrossRef Google scholar
[6]
a) L. Hou, P. Ning, Y. Feng, Y. Ding, L. Bai, L. Li, H. Yu, X. Meng, Anal. Chem. 2018, 90, 7122;b) L. Chai, T. Liang, Q. An, W. Hu, Y. Wang, B. Wang, S. Su, C. Li, Anal. Chem. 2022, 94, 5797;c) J. Jiang, X. Tian, C. Xu, S. Wang, Y. Feng, M. Chen, H. Yu, M. Zhu, X. Meng, Chem. Commun. 2017, 53, 3645;d) W. Wang, P. Ning, Q. Wang, W. Zhang, J. Jiang, Y. Feng, X. Meng, J. Mater. Chem. B 2018, 6, 1764.
CrossRef Google scholar
[7]
A. Wang, C. Chen, C. Mei, S. Liu, C. Xiang, W. Fang, F. Zhang, Y. Xu, S. Chen, Q. Zhang, Nat. Cell Biol. 2024, 24, 219.
[8]
S. Ponnaiyan, F. Akter, J. Singh, D. Winter, Sci. Data 2020, 7, 68.
[9]
T. Kolter, K. Sandhoff, Annu. Rev. Cell Dev. Biol. 2005, 21, 81.
CrossRef Google scholar
[10]
S. Hori, S. Nishiumi, K. Kobayashi, M. Shinohara, Y. Hatakeyama, Y. Kotani, N. Hatano, Y. Maniwa, W. Nishio, T. Bamba, E. Fukusaki, T. Azuma, T. Takenawa, Y. Nishimura, M. Yoshida, Lung Cancer 2011, 74, 284.
CrossRef Google scholar
[11]
D. S. Wishart, A. Guo, E. Oler, F. Wang, A. Anjum, H. Peters, R. Dizon, Z. Sayeeda, S. Tian, B. L. Lee, M. Berjanskii, R. Mah, M. Yamamoto, J. Jovel, C. Torres-Calzada, M. Hiebert-Giesbrecht, V. W. Lui, D. Varshavi, D. Varshavi, D. Allen, D. Arndt, N. Khetarpal, A. Sivakumaran, K. Harford, S. Sanford, K. Yee, X. Cao, Z. Budinski, J. Liigand, L. Zhang, J. Zheng, R. Mandal, N. Karu, M. Dambrova, H. B. Schiöth, R. Greiner, V. Gautam, Nucleic Acids Res. 2022, 50, D622.
[12]
S. Alseekh, A. Aharoni, Y. Brotman, K. Contrepois, J. D’Auria, J. C. Ewald, P. D. Fraser, P. Giavalisco, R. D. Hall, M. Heinemann, H. Link, J. Luo, S. Neumann, J. Nielsen, L. Perez de Souza, K. Saito, U. Sauer, F. C. Schroeder, S. Schuster, G. Siuzdak, A. Skirycz, L. W. Sumner, M. P. Snyder, H. Tang, T. Tohge, Y. Wang, W. Wen, S. Wu, G. Xu, N. Zamboni, A. R. Fernie, Nat. Methods 2021, 18, 747.
CrossRef Google scholar
[13]
a) M. H. Spitzer, G. P. Nolan, Cell 2016, 165, 780;b) K. D. Duncan, J. Fyrestam, I. Lanekoff, Analyst 2019, 144, 782.
CrossRef Google scholar
[14]
a) Y. Zhang, L. Lin, J. Ye, VIEW 2023, 4, 20230022; b) L. Hu, M. N. Amini, Y. Wu, Z. Jin, J. Yuan, R. Lin, J. Wu, Y. Dai, H. He, Y. Lu, Adv. Opt. Mater. 2018, 6, 1800440.
[15]
a) J. Li, F. Liu, C. He, F. Shen, J. Ye, Nanophotonics 2022, 11, 1549;b) F. Liu, T. Wu, A. Tian, C. He, X. Bi, Y. Lu, K. Yang, W. Xia, J. Ye, Anal. Chim. Acta 2023, 1279, 341809;c) Y. Lu, L. Lin, J. Ye, Mater. Today Bio. 2022, 13, 100205;d) S. Zhu, B. Deng, F. Liu, J. Li, L. Lin, J. Ye, ACS Appl. Mater. Interfaces 2022, 14, 8876.
CrossRef Google scholar
[16]
a) Y. Zhang, X. Ye, G. Xu, X. Jin, M. Luan, J. Lou, L. Wang, C. Huang, J. Ye, RSC Adv. 2016, 6, 5401;b) K. Koike, K. Bando, J. Ando, H. Yamakoshi, N. Terayama, K. Dodo, N. I. Smith, M. Sodeoka, K. Fujita, ACS Nano 2020, 14, 15032;c) J. J. Niu, M. G. Schrlau, G. Friedman, Y. Gogotsi, Small 2011, 7, 540.
CrossRef Google scholar
[17]
J. Plou, P. S. Valera, I. Garcia, C. D. L. de Albuquerque, A. Carracedo, L. M Liz-Marzan, ACS Photonics 2022, 9, 333.
CrossRef Google scholar
[18]
Y. Wang, D. Wang, G. Qi, P. Hu, E. Wang, Y. Jin, Anal. Chem. 2023, 95, 16234.
CrossRef Google scholar
[19]
J. Chen, J. Wang, Y. Geng, J. Yue, W. Shi, C. Liang, W. Xu, S. Xu, ACS Sens. 2021, 6, 1663.
CrossRef Google scholar
[20]
M. Chisanga, D. Linton, H. Muhamadali, D. I. Ellis, R. L. Kimber, A. Mironov, R. Goodacre, Analyst 2020, 145, 1236.
CrossRef Google scholar
[21]
W. Zhou, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, IEEE Trans. Image Process. 2004, 13, 600.
CrossRef Google scholar
[22]
a) J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, K. Kneipp, Nano Lett. 2006, 6, 2225;b) T. Büchner, D. Drescher, H. Traub, P. Schrade, S. Bachmann, N. Jakubowski, J. Kneipp, Anal. Bioanal. Chem. 2014, 406, 7003.
CrossRef Google scholar
[23]
C. Spedalieri, J. Kneipp, Nanoscale 2022, 14, 5314.
CrossRef Google scholar
[24]
J. P. Luzio, P. R. Pryor, N. A. Bright, Nat. Rev. Mol. Cell Biol. 2007, 8, 622.
CrossRef Google scholar
[25]
J. Kneipp, D. Drescher, Frontiers of Surface-Enhanced Raman Scattering, Wiley 2014.
[26]
K. Terasawa, Y. Kato, Y. Ikami, K. Sakamoto, K. Ohtake, S. Kusano, Y. Tomabechi, M. Kukimoto-Niino, M. Shirouzu, J.-L. Guan, T. Kobayashi, T. Iwata, T. Watabe, S. Yokoyama, M. Hara-Yokoyama, Autophagy 2021, 17, 4286.
CrossRef Google scholar
[27]
a) L. Teng, X. Wang, X. Wang, H. Gou, L. Ren, T. Wang, Y. Wang, Y. Ji, W. E. Huang, J. Xu, Sci. Rep. 2016, 6, 34359; b) L. Xiao, C. Wang, C. Dai, L. E. Littlepage, J. Li, Z. D. Schultz, Angew. Chem. 2020, 132, 3467.
CrossRef Google scholar
[28]
P. Schober, C. Boer, L. A. Schwarte, Anesth. Analg. 2018, 126, 1763.
CrossRef Google scholar
[29]
Z. Wang, A. C. Bovik, L. Lu, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 4, IEEE 2002, p. IV-3313.
[30]
D. Brunet, E. R. Vrscay, Z. Wang, IEEE Trans. Image Process. 2011, 21, 1488.
CrossRef Google scholar
[31]
a) C. Hu, X. Wang, L. Liu, C. Fu, K. Chu, Z. J. Smith, Analyst 2021, 146, 2348;b) X. Wang, G. Liu, M. Xu, B. Ren, Z. Tian, Anal. Chem. 2019, 91, 12909.
CrossRef Google scholar
[32]
S.-H. Luo, X. Wang, G.-Y. Chen, Y. Xie, W.-H. Zhang, Z.-F. Zhou, Z.-M. Zhang, B. Ren, G.-K. Liu, Z.-Q. Tian, Anal. Chem. 2021, 93, 8408.
CrossRef Google scholar
[33]
a) Y. Wang, B. Yan, L. Chen, Chem. Rev. 2013, 113, 1391;b) J. Ye, C. Chen, W. V. Roy, P. V. Dorpe, G. Maes, G. Borghs, Nanotechnology 2008, 19, 325702.
CrossRef Google scholar
[34]
a) L. M. Sherman, A. P. Petrov, L. F. P. Karger, M. G. Tetrick, N. J. Dovichi, J. P. Camden, Talanta 2020, 210, 120645;b) H. Su, T. Liu, L. Huang, J. Huang, J. Cao, H. Yang, J. Ye, J. Liu, K. Qian, J. Mater. Chem. B 2018, 6, 7280.
CrossRef Google scholar
[35]
B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, Nano Lett. 2006, 6, 662.
CrossRef Google scholar
[36]
S. Ali, J. Magdalena, D. S. Jennifer, J. P. Robinson, I. Joseph, J. Biomed. Opt. 2007, 12, 020502.
CrossRef Google scholar
[37]
J. Xu, T. Yu, C. E. Zois, J. X. Cheng, Y. Tang, A. L. Harris, W. E. Huang, Cancers 2021, 13, 1718.
CrossRef Google scholar
[38]
a) M. Riva, T. Sciortino, R. Secoli, E. D’Amico, S. Moccia, B. Fernandes, M. Conti Nibali, L. Gay, M. Rossi, E. De Momi, L. Bello, Cancers 2021, 13, 1073;b) A. T. Tu, J. Chin. Chem. Soc. 2003, 50, 1.
CrossRef Google scholar
[39]
a) U. Neugebauer, J. H. Clement, T. Bocklitz, C. Krafft, J. Popp, J. Biophotonics 2010, 3, 579;b) E. Podstawka, Y. Ozaki, L. M. Proniewicz, Appl. Spectrosc. 2005, 59, 1516.
CrossRef Google scholar
[40]
a) J. G. Mesu, T. Visser, F. Soulimani, B. M. Weckhuysen, Vib. Spectrosc. 2005, 39, 114;b) N. P. Ivleva, M. Wagner, A. Szkola, H. Horn, R. Niessner, C. Haisch, J. Phys. Chem. B 2010, 114, 10184.
CrossRef Google scholar
[41]
N. C. Maiti, M. M. Apetri, M. G. Zagorski, P. R. Carey, V. E. Anderson, J. Am. Chem. Soc. 2004, 126, 2399.
CrossRef Google scholar
[42]
S.-S. Li, M. Zhang, J.-H. Wang, F. Yang, B. Kang, J.-J. Xu, H.-Y. Chen, Anal. Chem. 2019, 91, 8398.
CrossRef Google scholar
[43]
a) A. Huefner, W.-L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, S. Mahajan, ACS Nano 2016, 10, 307;b) D. Carrier, M. Pézolet, Biophys. J. 1984, 46, 497.
CrossRef Google scholar
[44]
a) S. McAughtrie, K. Lau, K. Faulds, D. Graham, Chem. Sci. 2013, 4, 3566;b) V. Pareek, H. Tian, N. Winograd, S. J. Benkovic, Science 2020, 368, 283.
CrossRef Google scholar
[45]
a) M. Xie, F. Li, P. Gu, F. Wang, Z. Qu, J. Li, L. Wang, X. Zuo, X. Zhang, J. Shen, Cell Prolif. 2019, 52, e12618; b) L. F. Leopold, O. Marişca, I. Oprea, D. Rugină, M. Suciu, M. Nistor, M. Tofană, N. Leopold, C. Coman, Molecules 2020, 25, 1477;c) Y. Yang, Y. Chen, S. Zhao, H. Liu, J. Guo, H. Ju, Chem. Sci. 2022, 13, 9701.
CrossRef Google scholar
[46]
P. C. Lee, D. Meisel, J. Phys. Chem. 1982, 86, 3391.
CrossRef Google scholar
[47]
a) C. He, S. Zhu, X. Wu, J. Zhou, Y. Chen, X. Qian, J. Ye, ACS Omega 2022, 7, 10458;b) S. J. Barton, T. E. Ward, B. M. Hennelly, Anal. Methods 2018, 10, 3759.
CrossRef Google scholar
[48]
Z.-M. Zhang, S. Chen, Y.-Z. Liang, Analyst 2010, 135, 1138.
CrossRef Google scholar

RIGHTS & PERMISSIONS

2024 2024 The Authors. View published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.
PDF

Accesses

Citations

Detail

Sections
Recommended

/