Surface-enhanced Raman scattering spatial fingerprinting decodes the digestion behavior of lysosomes in live single cells

Fugang Liu , Zhirui Sun , Bingyi Li , Jiaqing Liu , Zhou Chen , Jian Ye

VIEW ›› 2024, Vol. 5 ›› Issue (3) : 20240004

PDF
VIEW ›› 2024, Vol. 5 ›› Issue (3) : 20240004 DOI: 10.1002/VIW.20240004
RESEARCH ARTICLE

Surface-enhanced Raman scattering spatial fingerprinting decodes the digestion behavior of lysosomes in live single cells

Author information +
History +
PDF

Abstract

Lysosome, the digestive organelle in eukaryotic cells, plays an important role in the degradation and recirculation of cellular products as well as in maintaining the stability of cellular metabolic microenvironment. Surface-enhanced Raman scattering (SERS) is a molecular fingerprint technology with high detection sensitivity and photostability, suited for revealing various intracellular molecular information by inducing endocytosis of SERS-active nanoparticles. However, it remains challenging to selectively extract the molecular information of specific organelles (e.g., lysosomes) from a high-dimensional spectral set. Herein, we proposed a novel paradigm by combining label-free SERS spectroscopy with confocal fluorescence imaging to investigate the digestion behavior of lysosomes in cells. The structural similarity algorithm was innovatively introduced and exhibited its effectiveness in screening out the wavenumbers in the SERS spectral set with high correlation with the metabolic behaviors of lysosomes. With comprehensive experiments on HeLa single cells, we captured the intracellularmacromolecular digestion phenomenon and discovered the changing pattern of cellular SERS spectra after starvation-induced autophagy, and analyzed the molecular information within the lysosomes in three-dimensional space.

Keywords

lysosomal digestion / nanoparticles / structural similarity / surface-enhanced Raman scattering

Cite this article

Download citation ▾
Fugang Liu, Zhirui Sun, Bingyi Li, Jiaqing Liu, Zhou Chen, Jian Ye. Surface-enhanced Raman scattering spatial fingerprinting decodes the digestion behavior of lysosomes in live single cells. VIEW, 2024, 5(3): 20240004 DOI:10.1002/VIW.20240004

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

M. Hu, J. Chen, S. Liu, H. Xu, Autophagy 2023, 19, 1368.

[2]

J. Debnath, N. Gammoh, K. M. Ryan, Nat. Rev. Mol. Cell Biol. 2023, 24, 560.

[3]

N. Mizushima, T. Yoshimori, B. Levine, Cell 2010, 140, 313.

[4]

J. M. Swanlund, K. C. Kregel, T. D. Oberley, Autophagy 2010, 6, 270.

[5]

I. Tanida, N. Minematsu-Ikeguchi, T. Ueno, E. Kominami, Autophagy 2005, 1, 84.

[6]

a) L. Hou, P. Ning, Y. Feng, Y. Ding, L. Bai, L. Li, H. Yu, X. Meng, Anal. Chem. 2018, 90, 7122;b) L. Chai, T. Liang, Q. An, W. Hu, Y. Wang, B. Wang, S. Su, C. Li, Anal. Chem. 2022, 94, 5797;c) J. Jiang, X. Tian, C. Xu, S. Wang, Y. Feng, M. Chen, H. Yu, M. Zhu, X. Meng, Chem. Commun. 2017, 53, 3645;d) W. Wang, P. Ning, Q. Wang, W. Zhang, J. Jiang, Y. Feng, X. Meng, J. Mater. Chem. B 2018, 6, 1764.

[7]

A. Wang, C. Chen, C. Mei, S. Liu, C. Xiang, W. Fang, F. Zhang, Y. Xu, S. Chen, Q. Zhang, Nat. Cell Biol. 2024, 24, 219.

[8]

S. Ponnaiyan, F. Akter, J. Singh, D. Winter, Sci. Data 2020, 7, 68.

[9]

T. Kolter, K. Sandhoff, Annu. Rev. Cell Dev. Biol. 2005, 21, 81.

[10]

S. Hori, S. Nishiumi, K. Kobayashi, M. Shinohara, Y. Hatakeyama, Y. Kotani, N. Hatano, Y. Maniwa, W. Nishio, T. Bamba, E. Fukusaki, T. Azuma, T. Takenawa, Y. Nishimura, M. Yoshida, Lung Cancer 2011, 74, 284.

[11]

D. S. Wishart, A. Guo, E. Oler, F. Wang, A. Anjum, H. Peters, R. Dizon, Z. Sayeeda, S. Tian, B. L. Lee, M. Berjanskii, R. Mah, M. Yamamoto, J. Jovel, C. Torres-Calzada, M. Hiebert-Giesbrecht, V. W. Lui, D. Varshavi, D. Varshavi, D. Allen, D. Arndt, N. Khetarpal, A. Sivakumaran, K. Harford, S. Sanford, K. Yee, X. Cao, Z. Budinski, J. Liigand, L. Zhang, J. Zheng, R. Mandal, N. Karu, M. Dambrova, H. B. Schiöth, R. Greiner, V. Gautam, Nucleic Acids Res. 2022, 50, D622.

[12]

S. Alseekh, A. Aharoni, Y. Brotman, K. Contrepois, J. D’Auria, J. C. Ewald, P. D. Fraser, P. Giavalisco, R. D. Hall, M. Heinemann, H. Link, J. Luo, S. Neumann, J. Nielsen, L. Perez de Souza, K. Saito, U. Sauer, F. C. Schroeder, S. Schuster, G. Siuzdak, A. Skirycz, L. W. Sumner, M. P. Snyder, H. Tang, T. Tohge, Y. Wang, W. Wen, S. Wu, G. Xu, N. Zamboni, A. R. Fernie, Nat. Methods 2021, 18, 747.

[13]

a) M. H. Spitzer, G. P. Nolan, Cell 2016, 165, 780;b) K. D. Duncan, J. Fyrestam, I. Lanekoff, Analyst 2019, 144, 782.

[14]

a) Y. Zhang, L. Lin, J. Ye, VIEW 2023, 4, 20230022; b) L. Hu, M. N. Amini, Y. Wu, Z. Jin, J. Yuan, R. Lin, J. Wu, Y. Dai, H. He, Y. Lu, Adv. Opt. Mater. 2018, 6, 1800440.

[15]

a) J. Li, F. Liu, C. He, F. Shen, J. Ye, Nanophotonics 2022, 11, 1549;b) F. Liu, T. Wu, A. Tian, C. He, X. Bi, Y. Lu, K. Yang, W. Xia, J. Ye, Anal. Chim. Acta 2023, 1279, 341809;c) Y. Lu, L. Lin, J. Ye, Mater. Today Bio. 2022, 13, 100205;d) S. Zhu, B. Deng, F. Liu, J. Li, L. Lin, J. Ye, ACS Appl. Mater. Interfaces 2022, 14, 8876.

[16]

a) Y. Zhang, X. Ye, G. Xu, X. Jin, M. Luan, J. Lou, L. Wang, C. Huang, J. Ye, RSC Adv. 2016, 6, 5401;b) K. Koike, K. Bando, J. Ando, H. Yamakoshi, N. Terayama, K. Dodo, N. I. Smith, M. Sodeoka, K. Fujita, ACS Nano 2020, 14, 15032;c) J. J. Niu, M. G. Schrlau, G. Friedman, Y. Gogotsi, Small 2011, 7, 540.

[17]

J. Plou, P. S. Valera, I. Garcia, C. D. L. de Albuquerque, A. Carracedo, L. M Liz-Marzan, ACS Photonics 2022, 9, 333.

[18]

Y. Wang, D. Wang, G. Qi, P. Hu, E. Wang, Y. Jin, Anal. Chem. 2023, 95, 16234.

[19]

J. Chen, J. Wang, Y. Geng, J. Yue, W. Shi, C. Liang, W. Xu, S. Xu, ACS Sens. 2021, 6, 1663.

[20]

M. Chisanga, D. Linton, H. Muhamadali, D. I. Ellis, R. L. Kimber, A. Mironov, R. Goodacre, Analyst 2020, 145, 1236.

[21]

W. Zhou, A. C. Bovik, H. R. Sheikh, E. P. Simoncelli, IEEE Trans. Image Process. 2004, 13, 600.

[22]

a) J. Kneipp, H. Kneipp, M. McLaughlin, D. Brown, K. Kneipp, Nano Lett. 2006, 6, 2225;b) T. Büchner, D. Drescher, H. Traub, P. Schrade, S. Bachmann, N. Jakubowski, J. Kneipp, Anal. Bioanal. Chem. 2014, 406, 7003.

[23]

C. Spedalieri, J. Kneipp, Nanoscale 2022, 14, 5314.

[24]

J. P. Luzio, P. R. Pryor, N. A. Bright, Nat. Rev. Mol. Cell Biol. 2007, 8, 622.

[25]

J. Kneipp, D. Drescher, Frontiers of Surface-Enhanced Raman Scattering, Wiley 2014.

[26]

K. Terasawa, Y. Kato, Y. Ikami, K. Sakamoto, K. Ohtake, S. Kusano, Y. Tomabechi, M. Kukimoto-Niino, M. Shirouzu, J.-L. Guan, T. Kobayashi, T. Iwata, T. Watabe, S. Yokoyama, M. Hara-Yokoyama, Autophagy 2021, 17, 4286.

[27]

a) L. Teng, X. Wang, X. Wang, H. Gou, L. Ren, T. Wang, Y. Wang, Y. Ji, W. E. Huang, J. Xu, Sci. Rep. 2016, 6, 34359; b) L. Xiao, C. Wang, C. Dai, L. E. Littlepage, J. Li, Z. D. Schultz, Angew. Chem. 2020, 132, 3467.

[28]

P. Schober, C. Boer, L. A. Schwarte, Anesth. Analg. 2018, 126, 1763.

[29]

Z. Wang, A. C. Bovik, L. Lu, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 4, IEEE 2002, p. IV-3313.

[30]

D. Brunet, E. R. Vrscay, Z. Wang, IEEE Trans. Image Process. 2011, 21, 1488.

[31]

a) C. Hu, X. Wang, L. Liu, C. Fu, K. Chu, Z. J. Smith, Analyst 2021, 146, 2348;b) X. Wang, G. Liu, M. Xu, B. Ren, Z. Tian, Anal. Chem. 2019, 91, 12909.

[32]

S.-H. Luo, X. Wang, G.-Y. Chen, Y. Xie, W.-H. Zhang, Z.-F. Zhou, Z.-M. Zhang, B. Ren, G.-K. Liu, Z.-Q. Tian, Anal. Chem. 2021, 93, 8408.

[33]

a) Y. Wang, B. Yan, L. Chen, Chem. Rev. 2013, 113, 1391;b) J. Ye, C. Chen, W. V. Roy, P. V. Dorpe, G. Maes, G. Borghs, Nanotechnology 2008, 19, 325702.

[34]

a) L. M. Sherman, A. P. Petrov, L. F. P. Karger, M. G. Tetrick, N. J. Dovichi, J. P. Camden, Talanta 2020, 210, 120645;b) H. Su, T. Liu, L. Huang, J. Huang, J. Cao, H. Yang, J. Ye, J. Liu, K. Qian, J. Mater. Chem. B 2018, 6, 7280.

[35]

B. D. Chithrani, A. A. Ghazani, W. C. W. Chan, Nano Lett. 2006, 6, 662.

[36]

S. Ali, J. Magdalena, D. S. Jennifer, J. P. Robinson, I. Joseph, J. Biomed. Opt. 2007, 12, 020502.

[37]

J. Xu, T. Yu, C. E. Zois, J. X. Cheng, Y. Tang, A. L. Harris, W. E. Huang, Cancers 2021, 13, 1718.

[38]

a) M. Riva, T. Sciortino, R. Secoli, E. D’Amico, S. Moccia, B. Fernandes, M. Conti Nibali, L. Gay, M. Rossi, E. De Momi, L. Bello, Cancers 2021, 13, 1073;b) A. T. Tu, J. Chin. Chem. Soc. 2003, 50, 1.

[39]

a) U. Neugebauer, J. H. Clement, T. Bocklitz, C. Krafft, J. Popp, J. Biophotonics 2010, 3, 579;b) E. Podstawka, Y. Ozaki, L. M. Proniewicz, Appl. Spectrosc. 2005, 59, 1516.

[40]

a) J. G. Mesu, T. Visser, F. Soulimani, B. M. Weckhuysen, Vib. Spectrosc. 2005, 39, 114;b) N. P. Ivleva, M. Wagner, A. Szkola, H. Horn, R. Niessner, C. Haisch, J. Phys. Chem. B 2010, 114, 10184.

[41]

N. C. Maiti, M. M. Apetri, M. G. Zagorski, P. R. Carey, V. E. Anderson, J. Am. Chem. Soc. 2004, 126, 2399.

[42]

S.-S. Li, M. Zhang, J.-H. Wang, F. Yang, B. Kang, J.-J. Xu, H.-Y. Chen, Anal. Chem. 2019, 91, 8398.

[43]

a) A. Huefner, W.-L. Kuan, K. H. Müller, J. N. Skepper, R. A. Barker, S. Mahajan, ACS Nano 2016, 10, 307;b) D. Carrier, M. Pézolet, Biophys. J. 1984, 46, 497.

[44]

a) S. McAughtrie, K. Lau, K. Faulds, D. Graham, Chem. Sci. 2013, 4, 3566;b) V. Pareek, H. Tian, N. Winograd, S. J. Benkovic, Science 2020, 368, 283.

[45]

a) M. Xie, F. Li, P. Gu, F. Wang, Z. Qu, J. Li, L. Wang, X. Zuo, X. Zhang, J. Shen, Cell Prolif. 2019, 52, e12618; b) L. F. Leopold, O. Marişca, I. Oprea, D. Rugină, M. Suciu, M. Nistor, M. Tofană, N. Leopold, C. Coman, Molecules 2020, 25, 1477;c) Y. Yang, Y. Chen, S. Zhao, H. Liu, J. Guo, H. Ju, Chem. Sci. 2022, 13, 9701.

[46]

P. C. Lee, D. Meisel, J. Phys. Chem. 1982, 86, 3391.

[47]

a) C. He, S. Zhu, X. Wu, J. Zhou, Y. Chen, X. Qian, J. Ye, ACS Omega 2022, 7, 10458;b) S. J. Barton, T. E. Ward, B. M. Hennelly, Anal. Methods 2018, 10, 3759.

[48]

Z.-M. Zhang, S. Chen, Y.-Z. Liang, Analyst 2010, 135, 1138.

RIGHTS & PERMISSIONS

2024 The Authors. View published by Shanghai Fuji Technology Consulting Co., Ltd, authorized by Professional Community of Experimental Medicine, National Association of Health Industry and Enterprise Management (PCEM) and John Wiley & Sons Australia, Ltd.

AI Summary AI Mindmap
PDF

196

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/