
Low-dimension confinement effect in COF-based hetero-photocatalyst for energy-conversion application
Yafei Yang, Dong He, Xiaobo Feng, Xiangheng Xiao
SmartMat ›› 2024, Vol. 5 ›› Issue (3) : e1223.
Low-dimension confinement effect in COF-based hetero-photocatalyst for energy-conversion application
Covalent organic framework (COF) materials have aroused tremendous interest in photocatalytic applications due to their tunable pore structure and photoelectric properties. The regular nanopore of COF itself presents a strongly confinement effect, which provides a unique regulatory effect for photons, electrons, protons, and other quantum-scale reaction groups. However, due to the weak surface electron coupling and transfer ability between the reactive groups and basic elements of its structural units, the activity of pure COFs photocatalyst is still not satisfactory. Therefore, the confinement modification strategy of confining low-dimension entities within COFs has been proposed, thus realizing new active sites construction and band structure regulation has been intensively studied, but yet to be summarized systematically. In this paper, the semi-conductivity of COFs is discussed dialectically based on photocatalytic thermodynamics, and the influence of internal linkage motifs and stacking behaviors on the band structure is collected. Then, the basic understanding of confinement characteristics and their influence on photocatalytic performance in dynamics is further explained according to the spatial dimension classification of low-dimension entities. And the application and mechanism of these COF-based confined catalysts in energy conversion reactions are discussed in detail. Lastly, the current challenges and development prospects of COF-based confined hetero-photocatalysts are discussed.
band structure / confinement modification strategy / covalent organic frameworks / energy-conversion
[1] |
Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238(5358):37-38.
|
[2] |
Linsebigler AL, Lu G, Yates JT Jr. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem Rev. 1995;95(3):735-758.
|
[3] |
Shen R, Zhang L, Chen X, Jaroniec M, Li N, Li X. Integrating 2D/2D CdS/α-Fe2O3 ultrathin bilayer Z-scheme heterojunction with metallic β-NiS nanosheet-based ohmic-junction for efficient photocatalytic H2 evolution. Appl Catal B. 2020;266:118619.
|
[4] |
Inoue T, Fujishima A, Konishi S, Honda K. Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature. 1979;277(5698):637-638.
|
[5] |
Zhang T, Xing G, Chen W, Chen L. Porous organic polymers: a promising platform for efficient photocatalysis. Mater Chem Front. 2020;4(2):332-353.
|
[6] |
Kanan S, Moyet MA, Arthur RB, Patterson HH. Recent advances on TiO2-based photocatalysts toward the degradation of pesticides and major organic pollutants from water bodies. Catal Rev. 2020;62(1):1-65.
|
[7] |
Yang H, Chen X, Hu G, et al. Highly efficient electrocatalytic hydrogen evolution promoted by O–Mo–C interfaces of ultrafine β-Mo2C nanostructures. Chem Sci. 2020;11(13):3523-3530.
|
[8] |
Wang D, Hisatomi T, Takata T, et al. Core/Shell photocatalyst with spatially separated Co-catalysts for efficient reduction and oxidation of water. Angew Chem Int Ed. 2013;52(43):11252-11256.
|
[9] |
Zhou Y, Zhou L, Zhou Y, Xing M, Zhang J. Z-scheme photo-Fenton system for efficiency synchronous oxidation of organic contaminants and reduction of metal ions. Appl Catal B. 2020;279:119365.
|
[10] |
Hernández-Alonso MD, Fresno F, Suárez S, Coronado JM. Development of alternative photocatalysts to TiO2: challenges and opportunities. Energy Environ Sci. 2009;2(12):1231-1257.
|
[11] |
Gong S, Hou M, Niu Y, et al. Molybdenum phosphide coupled with highly dispersed nickel confined in porous carbon nanofibers for enhanced photocatalytic CO2 reduction. Chem Eng J. 2022;427:131717.
|
[12] |
Li W, Chu X, Wang F, et al. Pd single-atom decorated CdS nanocatalyst for highly efficient overall water splitting under simulated solar light. Appl Catal B. 2022;304:121000.
|
[13] |
Dong H, Xiao M, Yu S, et al. Insight into the activity and stability of RhxP nano-species supported on g-C3N4 for photocatalytic H2 production. ACS Catal. 2020;10(1):458-462.
|
[14] |
Meng X, Liu L, Ouyang S, et al. Nanometals for solar-to-chemical energy conversion: from semiconductor-based photocatalysis to plasmon-mediated photocatalysis and photo-thermocatalysis. Adv Mater. 2016;28(32):6781-6803.
|
[15] |
Wang X, Maeda K, Thomas A, et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater. 2009;8(1):76-80.
|
[16] |
Wang X, She P, Zhang Q. Recent advances on electrochemical methods in fabricating two-dimensional organic-ligand-containing frameworks. SmartMat. 2021;2(3):299-325.
|
[17] |
Vyas VS, Haase F, Stegbauer L, et al. A tunable azine covalent organic framework platform for visible light-induced hydrogen generation. Nat Commun. 2015;6(1):8508.
|
[18] |
Waller PJ, Gándara F, Yaghi OM. Chemistry of covalent organic frameworks. Acc Chem Res. 2015;48(12):3053-3063.
|
[19] |
Liu X, Huang D, Lai C, et al. Recent advances in covalent organic frameworks (COFs) as a smart sensing material. Chem Soc Rev. 2019;48(20):5266-5302.
|
[20] |
Shi Y, Song J, Cui F, et al. Designing energetic covalent organic frameworks for stabilizing high-energy compounds. Nano Res. 2023;16:1507-1512.
|
[21] |
Xiang Z, Cao D, Dai L. Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications. Polym Chem. 2015;6(11):1896-1911.
|
[22] |
Pramudya Y, Mendoza-Cortes JL. Design principles for high H2 storage using chelation of abundant transition metals in covalent organic frameworks for 0–700 bar at 298 K. J Am Chem Soc. 2016;138(46):15204-15213.
|
[23] |
Zhang Z, Kang C, Peh SB, et al. Efficient adsorption of acetylene over CO2 in bioinspired covalent organic frameworks. J Am Chem Soc. 2022;144(33):14992-14996.
|
[24] |
Guo Z, Wu H, Chen Y, et al. Missing-linker defects in covalent organic framework membranes for efficient CO2 separation. Angew Chem Int Ed. 2022;61(41):e202210466.
|
[25] |
Wu M-X, Yang Y-W. Applications of covalent organic frameworks (COFs): from gas storage and separation to drug delivery. Chin Chem Lett. 2017;28(6):1135-1143.
|
[26] |
Zhao Q, Wang Y, Li M, et al. Organic frameworks confined Cu single atoms and nanoclusters for tandem electrocatalytic CO2 reduction to methane. SmartMat. 2022;3(1):183-193.
|
[27] |
Wang P, Zhou F, Yin X, Xie Q, Song G, Zhang X-B. Nanovoid-confinement and click-activated nanoreactor for synchronous delivery of prodrug pairs and precise photodynamic therapy. Nano Res. 2022;15(10):9264-9273.
|
[28] |
Shi Y, Guo Z, Fu Q, et al. Localized nuclear reaction breaks boron drug capsules loaded with immune adjuvants for cancer immunotherapy. Nat Commun. 2023;14(1):1884.
|
[29] |
Mu Z, Zhu Y, Li B, Dong A, Wang B, Feng X. Covalent organic frameworks with record pore apertures. J Am Chem Soc. 2022;144(11):5145-5154.
|
[30] |
Fu S, Jin E, Hanayama H, et al. Outstanding charge mobility by band transport in two-dimensional semiconducting covalent organic frameworks. J Am Chem Soc. 2022;144(11):7489-7496.
|
[31] |
Zhang S, Zhou J, Li H. Chiral covalent organic framework packed nanochannel membrane for enantioseparation. Angew Chem Int Ed. 2022;61(27):e202204012.
|
[32] |
Wang M, Zhang P, Liang X, et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat Sustain. 2022;5(6):518-526.
|
[33] |
Li Z, Guo J, Wan Y, Qin Y, Zhao M. Combining metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs): emerging opportunities for new materials and applications. Nano Res. 2022;15(4):3514-3532.
|
[34] |
Yang J, Tu B, Zhang G, et al. Advancing osmotic power generation by covalent organic framework monolayer. Nat Nanotechnol. 2022;17(6):622-628.
|
[35] |
Deng Y, Wang Y, Xiao X, et al. Progress in hybridization of covalent organic frameworks and metal–organic frameworks. Small. 2022;18(38):2202928.
|
[36] |
Zong H, Liu W, Li M, Gong S, Yu K, Zhu Z. Oxygen-terminated Nb2CO2 MXene with interfacial self-assembled COF as a bifunctional catalyst for durable zinc–air batteries. ACS Appl Mater Interfaces. 2022;14(8):10738-10746.
|
[37] |
Wan S, Guo J, Kim J, Ihee H, Jiang D. A belt-shaped, blue luminescent, and semiconducting covalent organic framework. Angew Chem Int Ed. 2008;47(46):8826-8830.
|
[38] |
Stegbauer L, Schwinghammer K, Lotsch BV. A hydrazone-based covalent organic framework for photocatalytic hydrogen production. Chem Sci. 2014;5(7):2789-2793.
|
[39] |
Wang D, Astruc D. The recent development of efficient Earth-abundant transition-metal nanocatalysts. Chem Soc Rev. 2017;46(3):816-854.
|
[40] |
Liu Q, Wang X. Polyoxometalate clusters: sub-nanometer building blocks for construction of advanced materials. Matter. 2020;2(4):816-841.
|
[41] |
Qiao B, Wang A, Yang X, et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat Chem. 2011;3(8):634-641.
|
[42] |
Wei C, Wang Y, Zhang Y, et al. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 2021;14(10):3576-3584.
|
[43] |
Ji Y, Huang L, Hu J, Streb C, Song Y-F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energy Environ Sci. 2015;8(3):776-789.
|
[44] |
Zhang Q, Dong S, Shao P, et al. Covalent organic framework–based porous ionomers for high-performance fuel cells. Science. 2022;378(6616):181-186.
|
[45] |
Xu M, Lai C, Liu X, et al. COF-confined catalysts: from nanoparticles and nanoclusters to single atoms. J Mater Chem A. 2021;9(43):24148-24174.
|
[46] |
Wang H, Wang H, Wang Z, et al. Covalent organic framework photocatalysts: structures and applications. Chem Soc Rev. 2020;49(12):4135-4165.
|
[47] |
Huang N, Chen X, Krishna R, Jiang D. Two-dimensional covalent organic frameworks for carbon dioxide capture through channel-wall functionalization. Angew Chem Int Ed. 2015;54(10):2986-2990.
|
[48] |
Zhang Q, Dai M, Shao H, et al. Insights into high conductivity of the two-dimensional iodine-oxidized sp2-c-COF. ACS Appl Mater Interfaces. 2018;10(50):43595-43602.
|
[49] |
Chen X, Addicoat M, Irle S, Nagai A, Jiang D. Control of crystallinity and porosity of covalent organic frameworks by managing interlayer interactions based on self-complementary π-electronic force. J Am Chem Soc. 2013;135(2):546-549.
|
[50] |
Chen S, Takata T, Domen K. Particulate photocatalysts for overall water splitting. Nat Rev Mater. 2017;2(10):17050.
|
[51] |
Zhao Z, Chen X, Li B, et al. Spatial regulation of acceptor units in olefin-linked COFs toward highly efficient photocatalytic H2 evolution. Adv Sci. 2022;9(29):2203832.
|
[52] |
Jiang Y, Tian B. Inorganic semiconductor biointerfaces. Nat Rev Mater. 2018;3(12):473-490.
|
[53] |
Bronstein H, Nielsen CB, Schroeder BC, McCulloch I. The role of chemical design in the performance of organic semiconductors. Nat Rev Chem. 2020;4(2):66-77.
|
[54] |
Kubo S, Kaji H. Parameter-free multiscale simulation realising quantitative prediction of hole and electron mobilities in organic amorphous system with multiple frontier orbitals. Sci Rep. 2018;8(1):13462.
|
[55] |
Wang S, Xu X, Yue Y, et al. Semiconductive covalent organic frameworks: structural design, synthesis, and application. Small Structures. 2020;1(2):2000021.
|
[56] |
Banerjee T, Podjaski F, Kröger J, Biswal BP, Lotsch BV. Polymer photocatalysts for solar-to-chemical energy conversion. Nat Rev Mater. 2021;6(2):168-190.
|
[57] |
Wang M, Ballabio M, Wang M, et al. Unveiling electronic properties in metal–phthalocyanine-based pyrazine-linked conjugated two-dimensional covalent organic frameworks. J Am Chem Soc. 2019;141(42):16810-16816.
|
[58] |
Singh Y. Electrical resistivity measurements: a review. Int J Modern Phy Conf Series. 2013;22:745-756.
|
[59] |
Dicker G, de Haas MP, Siebbeles LDA, Warman JM. Electrodeless time-resolved microwave conductivity study of charge-carrier photogeneration in regioregular poly(3-hexylthiophene) thin films. Phys Rev B: Condens Matter Mater Phys. 2004;70(4):045203.
|
[60] |
Mozer AJ, Sariciftci NS, Pivrikas A, et al. Charge carrier mobility in regioregular poly(3-hexylthiophene) probed by transient conductivity techniques: a comparative study. Phys Rev B: Condens Matter Mater Phys. 2005;71(3):035214.
|
[61] |
Boland JL, Casadei A, Tütüncüoglu G, et al. Increased photoconductivity lifetime in gaas nanowires by controlled n-type and p-type doping. ACS Nano. 2016;10(4):4219-4227.
|
[62] |
Torsi L, Dodabalapur A, Sabbatini L, Zambonin PG. Multi-parameter gas sensors based on organic thin-film-transistors. Sens Actuators, B. 2000;67(3):312-316.
|
[63] |
Warman JM, de Haas MP, Dicker G, Grozema FC, Piris J, Debije MG. Charge mobilities in organic semiconducting materials determined by pulse-radiolysis time-resolved microwave conductivity: π-bond-conjugated polymers versus π−π-stacked discotics. Chem Mater. 2004;16(23):4600-4609.
|
[64] |
Basurto JG, Burshtein Z. Electroluminescence studies in pyrene single crystals. Mol Cryst Liq Cryst. 1975;31(3-4):211-217.
|
[65] |
Wei H, Ning J, Cao X, Li X, Hao L. Benzotrithiophene-based covalent organic frameworks: construction and structure transformation under ionothermal condition. J Am Chem Soc. 2018;140(37):11618-11622.
|
[66] |
Thomas S, Li H, Zhong C, Matsumoto M, Dichtel WR, Bredas J-L. Electronic structure of two-dimensional π-conjugated covalent organic frameworks. Chem Mater. 2019;31(9):3051-3065.
|
[67] |
Prabakaran P, Satapathy S, Prasad E, Sankararaman S. Architecting pyrediyne nanowalls with improved inter-molecular interactions, electronic features and transport characteristics. J Mater Chem C. 2018;6(2):380-387.
|
[68] |
Thomas S, Li H, Dasari RR, et al. Design and synthesis of two-dimensional covalent organic frameworks with four-arm cores: prediction of remarkable ambipolar charge-transport properties. Mater Horizons. 2019;6(9):1868-1876.
|
[69] |
Thomas S, Li H, Bredas J-L. Emergence of an antiferromagnetic Mott insulating phase in hexagonal π-conjugated covalent organic frameworks. Adv Mater. 2019;31(17):1900355.
|
[70] |
Galeotti G, de Marchi F, Hamzehpoor E, et al. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat Mater. 2020;19(8):874-880.
|
[71] |
Schweicher G, Olivier Y, Lemaur V, Geerts YH. What currently limits charge carrier mobility in crystals of molecular semiconductors? Isr J Chem. 2014;54(5-6):595-620.
|
[72] |
Jing Y, Heine T. Two-dimensional kagome lattices made of hetero triangulenes are dirac semimetals or single-band semiconductors. J Am Chem Soc. 2019;141(2):743-747.
|
[73] |
Ghosh S, Tsutsui Y, Kawaguchi T, et al. Band-like transport of charge carriers in oriented two-dimensional conjugated covalent organic frameworks. Chem Mater. 2022;34(2):736-745.
|
[74] |
Sasmal HS, Halder A, Kunjattu HS, et al. Covalent self-assembly in two dimensions: connecting covalent organic framework nanospheres into crystalline and porous thin films. J Am Chem Soc. 2019;141(51):20371-20379.
|
[75] |
Dey K, Bhunia S, Sasmal HS, Reddy CM, Banerjee R. Self-assembly-driven nanomechanics in porous covalent organic framework thin films. J Am Chem Soc. 2021;143(2):955-963.
|
[76] |
Sasmal HS, Bag S, Chandra B, et al. Heterogeneous C–H functionalization in water via porous covalent organic framework nanofilms: a case of catalytic sphere transmutation. J Am Chem Soc. 2021;143(22):8426-8436.
|
[77] |
Saeki A, Koizumi Y, Aida T, Seki S. Comprehensive approach to intrinsic charge carrier mobility in conjugated organic molecules, macromolecules, and supramolecular architectures. Acc Chem Res. 2012;45(8):1193-1202.
|
[78] |
Ding X, Guo J, Feng X, et al. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew Chem Int Ed. 2011;50(6):1289-1293.
|
[79] |
Aubrey ML, Wiers BM, Andrews SC, et al. Electron delocalization and charge mobility as a function of reduction in a metal–organic framework. Nat Mater. 2018;17(7):625-632.
|
[80] |
Calik M, Auras F, Salonen LM, et al. Extraction of photogenerated electrons and holes from a covalent organic framework integrated heterojunction. J Am Chem Soc. 2014;136(51):17802-17807.
|
[81] |
Uribe-Romo FJ, Hunt JR, Furukawa H, Klöck C, O'Keeffe M, Yaghi OM. A crystalline imine-linked 3D porous covalent organic framework. J Am Chem Soc. 2009;131(13):4570-4571.
|
[82] |
Wan S, Gándara F, Asano A, et al. Covalent organic frameworks with high charge carrier mobility. Chem Mater. 2011;23(18):4094-4097.
|
[83] |
Kuhn P, Antonietti M, Thomas A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew Chem Int Ed. 2008;47(18):3450-3453.
|
[84] |
Wang K, Yang L-M, Wang X, et al. Covalent triazine frameworks via a low-temperature polycondensation approach. Angew Chem Int Ed. 2017;56(45):14149-14153.
|
[85] |
Meier CB, Sprick RS, Monti A, et al. Structure-property relationships for covalent triazine-based frameworks: the effect of spacer length on photocatalytic hydrogen evolution from water. Polymer. 2017;126:283-290.
|
[86] |
Jin E, Asada M, Xu Q, et al. Two-dimensional sp2 carbon–conjugated covalent organic frameworks. Science. 2017;357(6352):673-676.
|
[87] |
Chen R, Shi J-L, Ma Y, Lin G, Lang X, Wang C. Designed synthesis of a 2D porphyrin-based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew Chem Int Ed. 2019;58(19):6430-6434.
|
[88] |
Wang S, Li X-X, Da L, et al. A three-dimensional sp2 carbon-conjugated covalent organic framework. J Am Chem Soc. 2021;143(38):15562-15566.
|
[89] |
Zhang H, Zhao Z, Turley AT, et al. Aggregate science: from structures to properties. Adv Mater. 2020;32(36):2001457.
|
[90] |
Robayo-Molina I, Molina-Osorio AF, Guinane L, Tofail SAM, Scanlon MD. Pathway complexity in supramolecular porphyrin self-assembly at an immiscible liquid–liquid interface. J Am Chem Soc. 2021;143(24):9060-9069.
|
[91] |
Jelley EE. Spectral absorption and fluorescence of dyes in the molecular state. Nature. 1936;138(3502):1009-1010.
|
[92] |
Jelley EE. Molecular, nematic and crystal states of I: I-diethyl--cyanine chloride. Nature. 1937;139(3519):631.
|
[93] |
Kasha M. Energy transfer mechanisms and the molecular exciton model for molecular aggregates. Radiat Res. 1963;20(1):55-70.
|
[94] |
Butchosa C, McDonald TO, Cooper AI, Adams DJ, Zwijnenburg MA. Shining a light on s-triazine-based polymers. J Phys Chem C. 2014;118(8):4314-4324.
|
[95] |
Keller N, Calik M, Sharapa D, et al. Enforcing extended porphyrin J-aggregate stacking in covalent organic frameworks. J Am Chem Soc. 2018;140(48):16544-16552.
|
[96] |
Hynek J, Zelenka J, Rathouský J, et al. Designing porphyrinic covalent organic frameworks for the photodynamic inactivation of bacteria. ACS Appl Mater Interfaces. 2018;10(10):8527-8535.
|
[97] |
Wan S, Guo J, Kim J, Ihee H, Jiang D. A photoconductive covalent organic framework: self-condensed arene cubes composed of eclipsed 2D polypyrene sheets for photocurrent generation. Angew Chem Int Ed. 2009;48(30):5439-5442.
|
[98] |
Spitler EL, Dichtel WR. Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks. Nat Chem. 2010;2(8):672-677.
|
[99] |
Yang S, Streater D, Fiankor C, Zhang J, Huang J. Conjugation- and aggregation-directed design of covalent organic frameworks as white-light-emitting diodes. J Am Chem Soc. 2021;143(2):1061-1068.
|
[100] |
Bardi B, Dall'Agnese C, Moineau-Chane Ching KI, Painelli A, Terenziani F. Spectroscopic investigation and theoretical modeling of benzothiadiazole-based charge-transfer chromophores: from solution to nanoaggregates. J Phys Chem C. 2017;121(32):17466-17478.
|
[101] |
Ueda Y, Tsuji H, Tanaka H, Nakamura E. Synthesis, crystal packing, and ambipolar carrier transport property of twisted dibenzo[g,p]chrysenes. Chem–Asian J. 2014;9(6):1623-1628.
|
[102] |
Xie Z, Wang B, Yang Z, et al. Stable 2D heteroporous covalent organic frameworks for efficient ionic conduction. Angew Chem Int Ed. 2019;58(44):15742-15746.
|
[103] |
Keller N, Sick T, Bach NN, et al. Dibenzochrysene enables tightly controlled docking and stabilizes photoexcited states in dual-pore covalent organic frameworks. Nanoscale. 2019;11(48):23338-23345.
|
[104] |
Keller N, Bessinger D, Reuter S, et al. Oligothiophene-bridged conjugated covalent organic frameworks. J Am Chem Soc. 2017;139(24):8194-8199.
|
[105] |
Pan X, Bao X. The effects of confinement inside carbon nanotubes on catalysis. Acc Chem Res. 2011;44(8):553-562.
|
[106] |
Xiao J, Pan X, Zhang F, Li H, Bao X. Size-dependence of carbon nanotube confinement in catalysis. Chem Sci. 2017;8(1):278-283.
|
[107] |
Aso R, Hojo H, Takahashi Y, et al. Direct identification of the charge state in a single platinum nanoparticle on titanium oxide. Science. 2022;378(6616):202-206.
|
[108] |
Huang Q, Lin Z, Yan D. Tuning organic room-temperature phosphorescence through the confinement effect of inorganic micro/nanostructures. Small Struct. 2021;2(9):2100044.
|
[109] |
Bell AT. The impact of nanoscience on heterogeneous catalysis. Science. 2003;299(5613):1688-1691.
|
[110] |
Chen MS, Goodman DW. The structure of catalytically active gold on titania. Science. 2004;306(5694):252-255.
|
[111] |
Fan M, Wang WD, Zhu Y, Sun X, Zhang F, Dong Z. Palladium clusters confined in triazinyl-functionalized COFs with enhanced catalytic activity. Appl Catal B. 2019;257:117942.
|
[112] |
Shi X, Yao Y, Xu Y, et al. Imparting catalytic activity to a covalent organic framework material by nanoparticle encapsulation. ACS Appl Mater Interfaces. 2017;9(8):7481-7488.
|
[113] |
Bhadra M, Sasmal HS, Basu A, et al. Predesigned metal-anchored building block for in situ generation of pd nanoparticles in porous covalent organic framework: application in heterogeneous tandem catalysis. ACS Appl Mater Interfaces. 2017;9(15):13785-13792.
|
[114] |
Li X, Zhang C, Luo M, Yao Q, Lu Z-H. Ultrafine Rh nanoparticles confined by nitrogen-rich covalent organic frameworks for methanolysis of ammonia borane. Inorg Chem Front. 2020;7(5):1298-1306.
|
[115] |
Macht J, Carr RT, Iglesia E. Consequences of acid strength for isomerization and elimination catalysis on solid acids. J Am Chem Soc. 2009;131(18):6554-6565.
|
[116] |
Gounder R, Iglesia E. The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chem Commun. 2013;49(34):3491-3509.
|
[117] |
Carr RT, Neurock M, Iglesia E. Catalytic consequences of acid strength in the conversion of methanol to dimethyl ether. J Catalysis. 2011;278(1):78-93.
|
[118] |
Knaeble W, Carr RT, Iglesia E. Mechanistic interpretation of the effects of acid strength on alkane isomerization turnover rates and selectivity. J Catalysis. 2014;319:283-296.
|
[119] |
Gounder R, Iglesia E. The roles of entropy and enthalpy in stabilizing ion-pairs at transition states in zeolite acid catalysis. Acc Chem Res. 2012;45(2):229-238.
|
[120] |
Fu Q, Bao X. Confined microenvironment for catalysis control. Nat Catal. 2019;2(10):834-836.
|
[121] |
Derouane EG, André J-M, Lucas AA. A simple van der Waals model for molecule-curved surface interactions in molecular-sized microporous solids. Chem Phys Lett. 1987;137(4):336-340.
|
[122] |
Sun J, Bonneau C, Cantín Á, et al. The ITQ-37 mesoporous chiral zeolite. Nature. 2009;458(7242):1154-1157.
|
[123] |
Liang J, Liang Z, Zou R, Zhao Y. Heterogeneous catalysis in zeolites, mesoporous silica, and metal–organic frameworks. Adv Mater. 2017;29(30):1701139.
|
[124] |
Lesthaeghe D, Van Speybroeck V, Waroquier M. Efficient use of bifunctional acid−base properties for alkylammonium formation in amine-substituted zeolites. J Am Chem Soc. 2004;126(30):9162-9163.
|
[125] |
Zhong W, Sa R, Li L, et al. A covalent organic framework bearing single Ni sites as a synergistic photocatalyst for selective photoreduction of CO2 to CO. J Am Chem Soc. 2019;141(18):7615-7621.
|
[126] |
Ding S-Y, Gao J, Wang Q, et al. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J Am Chem Soc. 2011;133(49):19816-19822.
|
[127] |
Liu M, Wang X, Liu J, Wang K, Jin S, Tan B. Palladium as a superior cocatalyst to platinum for hydrogen evolution using covalent triazine frameworks as a support. ACS Appl Mater Interfaces. 2020;12(11):12774-12782.
|
[128] |
Bi J, Fang W, Li L, et al. Covalent triazine-based frameworks as visible light photocatalysts for the splitting of water. Macromol Rapid Commun. 2015;36(20):1799-1805.
|
[129] |
Ding S-Y, Wang P-L, Yin G-L, Zhang X, Lu G. Energy transfer in covalent organic frameworks for visible-light-induced hydrogen evolution. Int J Hydrogen Energy. 2019;44(23):11872-11876.
|
[130] |
Liu L, Corma A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev. 2018;118(10):4981-5079.
|
[131] |
Mitchell S, Vorobyeva E, Pérez-Ramírez J. The multifaceted reactivity of single-atom heterogeneous catalysts. Angew Chem Int Ed. 2018;57(47):15316-15329.
|
[132] |
Parkinson GS. Single-atom catalysis: how structure influences catalytic performance. Catal Lett. 2019;149(5):1137-1146.
|
[133] |
Grommet AB, Feller M, Klajn R. Chemical reactivity under nanoconfinement. Nat Nanotechnol. 2020;15(4):256-271.
|
[134] |
Xiao J, Pan X, Guo S, Ren P, Bao X. Toward fundamentals of confined catalysis in carbon nanotubes. J Am Chem Soc. 2015;137(1):477-482.
|
[135] |
Ming J, Liu A, Zhao J, et al. Hot π-electron tunneling of metal–insulator–COF nanostructures for efficient hydrogen production. Angew Chem Int Ed. 2019;58(50):18290-18294.
|
[136] |
Wang D, Zeng H, Xiong X, et al. Highly efficient charge transfer in CdS-covalent organic framework nanocomposites for stable photocatalytic hydrogen evolution under visible light. Sci Bull. 2020;65(2):113-122.
|
[137] |
Thote J, Aiyappa HB, Deshpande A, Díaz Díaz D, Kurungot S, Banerjee R. A covalent organic framework–cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. Chem A Eur J. 2014;20(48):15961-15965.
|
[138] |
Liu L, Zhang J, Tan X, et al. Supercritical CO2 produces the visible-light-responsive TiO2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution. Nano Res. 2020;13(4):983-988.
|
[139] |
Ren X, Li C, Liu J, et al. The fabrication of Pd single atoms/clusters on COF layers as Co-catalysts for photocatalytic H2 evolution. ACS Appl Mater Interfaces. 2022;14(5):6885-6893.
|
[140] |
Dong P, Wang Y, Zhang A, Cheng T, Xi X, Zhang J. Platinum single atoms anchored on a covalent organic framework: boosting active sites for photocatalytic hydrogen evolution. ACS Catal. 2021;11(21):13266-13279.
|
[141] |
Zang Y, Cheng Y-J, Wang Z-D, et al. Ionic covalent organic nanosheet anchoring discrete copper for efficient quasi-homogeneous photocatalytic proton reduction. Appl Catal B. 2022;302:120817.
|
[142] |
Guo K, Zhu X, Peng L, et al. Boosting photocatalytic CO2 reduction over a covalent organic framework decorated with ruthenium nanoparticles. Chem Eng J. 2021;405:127011.
|
[143] |
Lin G, Sun L, Huang G, et al. Direct Z-scheme copper cobaltite/covalent triazine-based framework heterojunction for efficient photocatalytic CO2 reduction under visible light. Sustain Energy Fuels. 2021;5(3):732-739.
|
[144] |
Lu M, Zhang M, Liu J, et al. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction. J Am Chem Soc. 2022;144(4):1861-1871.
|
[145] |
Zhang M, Lu M, Lang Z-L, et al. Semiconductor/covalent-organic-framework Z-Scheme heterojunctions for artificial photosynthesis. Angew Chem Int Ed. 2020;59(16):6500-6506.
|
[146] |
Huang Y, Du P, Shi W-X, et al. Filling COFs with bimetallic nanoclusters for CO2-to-alcohols conversion with H2O oxidation. Appl Catal B. 2021;288:120001.
|
[147] |
Huang G, Niu Q, Zhang J, et al. Platinum single-atoms anchored covalent triazine framework for efficient photoreduction of CO2 to CH4. Chem Eng J. 2022;427:131018.
|
[148] |
Wang L, Wang L, Yuan S, et al. Covalently-bonded single-site Ru-N2 knitted into covalent triazine frameworks for boosting photocatalytic CO2 reduction. Appl Catal B. 2023;322:122097.
|
[149] |
Ran L, Li Z, Ran B, et al. Engineering single-atom active sites on covalent organic frameworks for boosting CO2 photoreduction. J Am Chem Soc. 2022;144(37):17097-17109.
|
[150] |
Huang G, Niu Q, He Y, et al. Spatial confinement of copper single atoms into covalent triazine-based frameworks for highly efficient and selective photocatalytic CO2 reduction. Nano Res. 2022;15(9):8001-8009.
|
[151] |
Tu W, Yang Y, Chen C, et al. Cu–O/N single sites incorporated 2D covalent organic framework ultrathin nanobelts for highly selective visible-light-driven CO2 reduction to CO. Small Struct. 2022:2200233.
|
[152] |
Lu M, Li Q, Liu J, et al. Installing earth-abundant metal active centers to covalent organic frameworks for efficient heterogeneous photocatalytic CO2 reduction. Appl Catal B. 2019;254:624-633.
|
[153] |
Kou M, Liu W, Wang Y, et al. Photocatalytic CO2 conversion over single-atom MoN2 sites of covalent organic framework. Appl Catal B. 2021;291:120146.
|
[154] |
Wang X, Fu Z, Zheng L, et al. Covalent organic framework nanosheets embedding single cobalt sites for photocatalytic reduction of carbon dioxide. Chem Mater. 2020;32(21):9107-9114.
|
[155] |
Xiang Y, Dong W, Wang P, et al. Constructing electron delocalization channels in covalent organic frameworks powering CO2 photoreduction in water. Appl Catal B. 2020;274:119096.
|
[156] |
Yang Y, Niu H, Zhao W, Xu L, Zhang H, Cai Y. Ultrafine Pd nanoparticles loaded benzothiazole-linked covalent organic framework for efficient photocatalytic C–C cross-coupling reactions. RSC Adv. 2020;10(8):29402-29407.
|
[157] |
Zhang Y, Hu Y, Zhao J, et al. Covalent organic framework-supported Fe–TiO2 nanoparticles as ambient-light-active photocatalysts. J Mater Chem A. 2019;7(27):16364-16371.
|
[158] |
Deng Y, Zhang Z, Du P, et al. Embedding ultrasmall Au clusters into the pores of a covalent organic framework for enhanced photostability and photocatalytic performance. Angew Chem Int Ed. 2020;59(15):6082-6089.
|
[159] |
Kour P, Mukherjee SP. CsPbBr3/Cs4PbBr6 perovskite@COF nanocomposites for visible-light-driven photocatalytic applications in water. J Mater Chem A. 2021;9(11):6819-6826.
|
[160] |
Chen H, Liu W, Laemont A, et al. A visible-light-harvesting covalent organic framework bearing single nickel sites as a highly efficient sulfur–carbon cross-coupling dual catalyst. Angew Chem Int Ed. 2021;60(19):10820-10827.
|
[161] |
Li J, Liu P, Tang Y, et al. Single-atom Pt–N3 sites on the stable covalent triazine framework nanosheets for photocatalytic N2 fixation. ACS Catal. 2020;10(4):2431-2442.
|
[162] |
Wang J, Zhang Z, Qi S, et al. Photo-assisted high-performance single atom electrocatalysis of the N2 reduction reaction by a Mo-embedded covalent organic framework. J Mater Chem A. 2021;9(35):19949-19957.
|
[163] |
Jati A, Dey K, Nurhuda M, Addicoat MA, Banerjee R, Maji B. Dual metalation in a two-dimensional covalent organic framework for photocatalytic C–N cross-coupling reactions. J Am Chem Soc. 2022;144(17):7822-7833.
|
[164] |
Liu L, Zhang X, Yang L, Ren L, Wang D, Ye J. Metal nanoparticles induced photocatalysis. Natl Sci Rev. 2017;4(5):761-780.
|
[165] |
Kattel S, Ramírez PJ, Chen JG, Rodriguez JA, Liu P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science. 2017;355(6331):1296-1299.
|
[166] |
Zhang J, Wang L, Zhang B, et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat Catal. 2018;1(7):540-546.
|
[167] |
Yin Y, Alivisatos AP. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature. 2005;437(7059):664-670.
|
[168] |
Zhang Z, Wang Z, He S, Wang C, Jin M, Yin Y. Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chem Sci. 2015;6(9):5197-5203.
|
[169] |
Chen X, Wu G, Chen J, Chen X, Xie Z, Wang X. Synthesis of “clean” and well-dispersive Pd nanoparticles with excellent electrocatalytic property on graphene oxide. J Am Chem Soc. 2011;133(11):3693-3695.
|
[170] |
Akita T, Lu P, Ichikawa S, Tanaka K, Haruta M. Analytical TEM study on the dispersion of Au nanoparticles in Au/TiO2 catalyst prepared under various temperatures. Surf Interface Anal. 2001;31(2):73-78.
|
[171] |
Mohamed MB, Wang ZL, El-Sayed MA. Temperature-dependent size-controlled nucleation and growth of gold nanoclusters. J Phys Chem A. 1999;103(49):10255-10259.
|
[172] |
Nguyen HL, Gándara F, Furukawa H, Doan TLH, Cordova KE, Yaghi OM. A titanium–organic framework as an exemplar of combining the chemistry of metal– and covalent–organic frameworks. J Am Chem Soc. 2016;138(13):4330-4333.
|
[173] |
Pachfule P, Panda MK, Kandambeth S, Shivaprasad SM, Díaz DD, Banerjee R. Multifunctional and robust covalent organic framework–nanoparticle hybrids. J Mater Chem A. 2014;2(21):7944-7952.
|
[174] |
Chan-Thaw CE, Villa A, Katekomol P, Su D, Thomas A, Prati L. Covalent triazine framework as catalytic support for liquid phase reaction. Nano Lett. 2010;10(2):537-541.
|
[175] |
Soorholtz M, Jones LC, Samuelis D, et al. Local platinum environments in a solid analogue of the molecular periana catalyst. ACS Catal. 2016;6(4):2332-2340.
|
[176] |
Palkovits R, Antonietti M, Kuhn P, Thomas A, Schüth F. Solid catalysts for the selective low-temperature oxidation of methane to methanol. Angew Chem Int Ed. 2009;48(37):6909-6912.
|
[177] |
Zhu Q-L, Xu Q. Immobilization of ultrafine metal nanoparticles to high-surface-area materials and their catalytic applications. Chem. 2016;1(2):220-245.
|
[178] |
Lu S, Hu Y, Wan S, et al. Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications. J Am Chem Soc. 2017;139(47):17082-17088.
|
[179] |
Liu M, Jiang K, Ding X, et al. Controlling monomer feeding rate to achieve highly crystalline covalent triazine frameworks. Adv Mater. 2019;31(19):1807865.
|
[180] |
Yu S-Y, Mahmood J, Noh H-J, et al. Direct synthesis of a covalent triazine-based framework from aromatic amides. Angew Chem Int Ed. 2018;57(28):8438-8442.
|
[181] |
Jiang X, Wang P, Zhao J. 2D covalent triazine framework: a new class of organic photocatalyst for water splitting. J Mater Chem A. 2015;3(15):7750-7758.
|
[182] |
Tachibana Y, Vayssieres L, Durrant JR. Artificial photosynthesis for solar water-splitting. Nat Photonics. 2012;6(8):511-518.
|
[183] |
Chi B, Lin H, Li J. Cations distribution of CuxCo3−xO4 and its electrocatalytic activities for oxygen evolution reaction. Int J Hydrogen Energy. 2008;33(18):4763-4768.
|
[184] |
Jeghan SMN, Do JY, Kang M. Fabrication of flower-like copper cobaltite/graphitic-carbon nitride (CuCo2O4/g-C3N4) composite with superior photocatalytic activity. J Ind Eng Chem. 2018;57:405-415.
|
[185] |
Alali KT, Lu Z, Zhang H, et al. P–p heterojunction CuO/CuCo2O4 nanotubes synthesized via electrospinning technology for detecting n-propanol gas at room temperature. Inorg Chem Front. 2017;4(7):1219-1230.
|
[186] |
Huang P, Huang J, Pantovich SA, et al. Selective CO2 reduction catalyzed by single cobalt sites on carbon nitride under visible-light irradiation. J Am Chem Soc. 2018;140(47):16042-16047.
|
[187] |
Saadi S, Bouguelia A, Trari M. Photoassisted hydrogen evolution over spinel CuM2O4 (M=Al, Cr, Mn, Fe and Co). Renew Energy. 2006;31(14):2245-2256.
|
[188] |
Pool R. Clusters: strange morsels of matter. Science. 1990;248(4960):1186-1188.
|
[189] |
Tsunoyama H, Sakurai H, Negishi Y, Tsukuda T. Size-specific catalytic activity of polymer-stabilized gold nanoclusters for aerobic alcohol oxidation in water. J Am Chem Soc. 2005;127(26):9374-9375.
|
[190] |
Li Y, Liu JHC, Witham CA, et al. A Pt-cluster-based heterogeneous catalyst for homogeneous catalytic reactions: x-ray absorption spectroscopy and reaction kinetic studies of their activity and stability against leaching. J Am Chem Soc. 2011;133(34):13527-13533.
|
[191] |
Lei Y, Mehmood F, Lee S, et al. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science. 2010;328(5975):224-228.
|
[192] |
Wang J, Yu Y, Xu W, et al. Covalent triazine framework encapsulated Pd nanoclusters for efficient hydrogen production via ammonia borane hydrolysis. J Catalysis. 2022;411:72-83.
|
[193] |
Ma L, Hu W, Mei B, et al. Covalent triazine framework confined copper catalysts for selective electrochemical CO2 reduction: operando diagnosis of active sites. ACS Catal. 2020;10(8):4534-4542.
|
[194] |
Malta G, Kondrat SA, Freakley SJ, et al. Identification of single-site gold catalysis in acetylene hydrochlorination. Science. 2017;355(6332):1399-1403.
|
[195] |
Chung HT, Cullen DA, Higgins D, et al. Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst. Science. 2017;357(6350):479-484.
|
[196] |
Du Y, Sheng H, Astruc D, Zhu M. Atomically precise noble metal nanoclusters as efficient catalysts: a bridge between structure and properties. Chem Rev. 2020;120(2):526-622.
|
[197] |
Gates BC, Flytzani-Stephanopoulos M, Dixon DA, Katz A. Atomically dispersed supported metal catalysts: perspectives and suggestions for future research. Catal Sci Technol. 2017;7(19):4259-4275.
|
[198] |
Aiyappa HB, Thote J, Shinde DB, Banerjee R, Kurungot S. Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem Mater. 2016;28(12):4375-4379.
|
[199] |
Li X, Bi W, Zhang L, et al. Single-atom Pt as co-catalyst for enhanced photocatalytic H2 evolution. Adv Mater. 2016;28:2427-2431.
|
[200] |
Chen Y, Ji S, Sun W, et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew Chem Int Ed. 2020;59(3):1295-1301.
|
[201] |
Fang X, Shang Q, Wang Y, et al. Single Pt atoms confined into a metal–organic framework for efficient photocatalysis. Adv Mater. 2018;30(7):1705112.
|
/
〈 |
|
〉 |