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Background: The advancement of genomics has progressed in lightning speed over the past two decades. Numerous
large-scale genome sequencing initiatives were announced, along with the rise of the holistic precision medicine
approach. However, the field of genomic medicine has now come to a bottleneck since genomic-phenomic interactions
are not fully comprehended due to the complexity of the human systems biology and environmental influence, hence
the emergence of human phenomics.
Results: This review attempts to provide an overview of the potential advantages of investigating the human
phenomics of indigenous populations and the challenges ahead.
Conclusion: We believe that the indigenous populations serve as an ideal model to excavate our understanding of
genomic-environmental-phenomics interactions.
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Author summary: The advancement of genomic technology has progressed in a lightning speed. However, the
understanding of genotype-phenotype interactions has come to a bottleneck owing to the complex interplays between the
human biology and environment, hence posing hindrance to materialising precision medicine in a holistic manner. The newly
emerging discipline on human phenomics may be the solution. We argue that the indigenous populations serve as an ideal
model to excavate our understanding on genomic-environmental-phenomics interactions. This review provides an overview
on the potential advantages of investigating the human phenomics in the indigenous populations, and the challenges ahead.

INTRODUCTION

The ultimate goal of modern human biology is to
completely understand how genetic make-up results in
specific phenotypic properties, namely how human bodies
function, and how to prevent deterioration. Although we
often assume that the human genome is fixed, there are
individual differences that drive phenotypic variations,
such as skin pigmentation, weight, height, blood pressure.
A large portion of these traits can be regulated by
environmental changes, for instance diet, climate, sun-
light exposure, microbial exposure. Such diverse inter-
active sources have led to an unprecedented collection of
physical, environmental, biological, and medical threats

faced by human beings.
The past two decades have witnessed a revolutionary

advancement in the field of human genomics. Following
the announcement on the completion of the draft of
human genome sequence in 2000 [1,2], genomic
technologies, along with the analytical and digital
revolution, have progressed at a tremendous pace – the
inauguration of the International HapMap Project [3–5],
followed by the launching of whole genome genotyping
arrays, and subsequently, the genome-wide association
studies (GWAS) on numerous Mendelian and complex
diseases [6]. In addition, there is the blooming of the next-
generation sequencing technologies [7–9] and the com-
mencement of the 1000 Genomes Project [10,11]. Today,
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we witness the completion of various ‘mega-scaled’
whole genome sequencing initiatives that involve thou-
sands to tens of thousands of samples – the UK10K
Project [12]; the SG10K Study [13]; the Genome Asia
100K [14]; the ChinaMap initiative [15]; Korean Genome
Project [16]; the All of Us Research Programme; and the
recently-launched Genome Sequencing of 1000 Indians,
to name a few.
However, scientists realize that the power of genomics

has come to a bottleneck, and that the understanding of
genotype-phenotype interactions has encountered chal-
lenges due to the complexity of the biological systems
that interplay with multiple environmental factors [17].
Although GWAS has shifted the paradigm for genetic
investigations and the understanding of genetic architec-
tures for many complex traits, the majority cannot be
reliably replicated, and our understanding between the
genotype-phenotype relationships remains scarce [18–
20]. To overcome this challenge, comprehensive catalo-
gue of genetic variations for both mainstream and
marginalized populations [21] must couple with multiple
dimensional phenotypes and considerations of harmo-
nized environmental influence hence the emergence of
human phenomics. The marginalized populations, such as
the indigenous populations, referring to the populations
residing within geographically distinct traditional habi-
tats, ancestral territories, and relying on natural resources
in these habitats and territories for survival, may be an
ideal model by nature to comprehend human genomic-
phenomics interactions. They maintain their unique
cultural identities, as well as social, economic, cultural,
and political practices separate from mainstream societies
and norms. The indigenous populations usually have long
population history and are genetically more homogenous
compared to the mainstream populations. In addition,
these communities are minimally exposed to moderniza-
tion, genetically homogenous, and reside within a
relatively ‘controllable’ habitat, which collectively ease
the measurement of the phenotypic changes. This review
attempts to provide an overview on the potential use of
indigenous populations research in cataloguing the
human phenome, and the challenges ahead.

LESSONS LEARNT FROM GWAS

Since its first publication in 2002 [22], genome-wide
association studies (GWAS) have revealed well-supported
association sand successfully mapped thousands of novel
variants associated with complex traits, leading to
discovery of new disease physiology (https://www.ebi.
ac.uk/gwas/).
The underlying principle of GWAS is the ‘common

disease-common variants’ hypothesis, which assumes
that the major contributors to the genetic susceptibility of
common diseases are the common genetic variants

amongst a population. These variants often have lower
penetrance and small additive genetic effect, which
explains why the vast majority of these loci generally
explains only a small proportion of the phenotypic
variance with modest effect size. In the case of human
height, a total of 180 stringently validated loci collectively
explains only ~10% of the genetic variation [23]. Thus,
the problem of ‘missing heritability’ remains arguable
[19]. Some speculate that ‘missing heritability’ could be
due to rarer variants with high penetrance that contribute
to disease susceptibility [19]. Future measures include
applying stringent statistical tests to minimize false-
positive findings [24], or simply increasing the sample
size and density of genotypes [25–28].
A striking example is hypertension. During its earlier

stages, GWAS failed to identify the genes responsible for
the genetic susceptibility of hypertension [6,29]. Subse-
quently, a large-scale meta-GWAS was performed, which
identified several hundreds of associated loci. Yet, they
only explain ~3%–5% of hypertension heritability [30],
and many of the association signals are not replicable.
This is plausibly due to the fact that the etiology of
hypertension is primarily classified into different inter-
mediate phenotypes based on its physiological mechan-
isms, which potentially dilutes the statistical effects.
Therefore, we believe that one solution to address
genotype-phenotype interactions is via deep phenotyping.

WHAT IS THE HUMAN PHENOME?

Phenotype refers to a set of properties or characteristics
that arise from the interaction between an individual’s
genetic make-up and the environment, while phenome
refers to the complete set of all human characteristics,
determined by complex interactions between genes and
the environment. The human phenome includes a
comprehensive collection of all phenotypes, ranging
from macro- to micro-scales, from external appearance
to internal mechanisms, from biochemical characteristics
to microbiota and psychological behavior, from popula-
tion to individual levels, and from system to tissue and
cellular characteristics [31].
Human phenomics integrates and models multiple ‘-

omics’ parameters together with other biological metadata
and their impact on disease risk at individual and
population levels. It is the key driver towards elucidating
the ultimate gene-environment interactions that underpin
the differential risks, prevalence, and emergence of
disease phenotypes.

HUMAN PHENOME AND PRECISION
MEDICINE

Precision medicine is a holistic idea that customizes the
healthcare approach of an individual patient or a
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particular group of patients [32]. Although genetic make-
up is no doubt the key element to the implementation of
precision medicine, individual history, environment,
lifestyle, as well as heterogeneous disease phenotypes
and manifestations must be taken into consideration.
Therefore, in addition to physical and biochemical
parameters, numerous ‘-omics’ technologies including
transcriptomics, proteomics, metabolomics, lipidomics,
metagenomics, epigenomics, and microbiomes, have
been proposed as an alternative solution to overcome
challenges for precision medicine [33]. In other words,
the prerequisite to warrant the success of precision
medicine is comprehensive cataloguing the cell-, indivi-
dual- and population-based phenomes (Fig. 1). Precision
medicine in hypertension is a typical model that reflects
the importance of phenomics [34].
Hypertension is a classic model to exemplify the

importance of phenomics in precision medicine. Hyper-
tension, defined as the persistent elevation in blood
pressure (BP) greater than 140/90 mmHg, affects 1.2
billion people worldwide [35]. It has been increasingly
recognized as a syndrome, rather than a disease [36]. In
addition, only ~30% of hypertensive individuals have
their blood pressure well-controlled, despite being
prescribed various anti-hypertensive medications [37].
Hypertension is categorized into primary (or essential)

and secondary hypertension. Approximately 90% of
hypertension appears with no identified cause, hence

defined as primary hypertension, while the rest are due to
endocrine or renal pathologies, hence termed as second-
ary hypertension. Primary hypertension is further cate-
gorized into intermediate phenotypes, including salt-
resistant (~40% of the primary hypertension) and salt-
sensitive, which can be further sub-classified into low-
renin (~55% of the salt-sensitive) and normal-renin levels
(non-modulation) [36]. Other hypertension sub-inter-
mediate phenotypes being suggested including obesity-
related hypertension [38] and deoxycorticosterone acetate
(DOCA) salt hypertension, which exhibits salt-dependent
excess mineralocorticoid [39,40]. What aggravates this
complication is the fact that numerous factors, including
age, sex, circadian rhythm, individual lifestyle, and
physical activity. These factors have been proposed to
further explain the increased risk of hypertension and
individual differential response to anti-hypertensive
medication. In addition, variation in average blood
pressure levels have been shown in different populations
[41], and that hypertension susceptibility is correlated
with geographical latitude [42–44].
Collectively, these findings suggest that the realization

of precision medicine for hypertension relies on compre-
hensive phenotyping and the understanding of the
complex, dynamic interactions between “genotype-envir-
onment-phenotypes” [34,36]. Essentially, the holistic
approach of human phenomics to the implications of
precision medicine should be reflected by Fig. 1.

Figure 1. Holistic approach to precision medicine. An ideal model for precision medicine should consider not only individual
genomic information, but also the totality of phenotypical and environmental influences. Essentially, an established analysis pipeline

must be developed to handle the generated metadata. Ultimately, a database or a data repository would be able to systematically
manage the outcome of the investigations and serve as a future reference.

© The Author(s) 2021. Published by Higher Education Press 37

Phenomics of indigenous populations



INDIGENOUS POPULATIONS AS THE
MODEL POPULATION FOR PHENOMIC
STUDY

The idea of phenomics was first proposed by Nelson
Freimer and Chiara Sabatti in 2003 [31]. However, owing
to the limitation of technology, the idea was initially
unsuccessful. Subsequently, a handful of phenome-wide
association studies (PheWAS) were published, which
principally examined phenotypic data derived from
electronic health records across large population cohorts
and associated them with genome-wide genotyping data
[45–48], while others selected a list of chosen phenotypes
[49,50]. A handful of single-nucleotide polymorphisms
(SNPs) with pleiotropic effects were identified from these
studies, further advancing our understanding of genotype-
phenotype interactions.
Phenome research has progressed into utilizing animal

models with several recently-initiated projects [51,52].
Although utilizing animal models simplifies the analytical
framework, the practical limitation of performing bench
studies in a laboratory setting has often restricted findings
and does not reflect the larger picture of systems biology
of human traits [53]. For instance, non-human primates
can sustain viral replication in relevant cell types and
develop a robust immune response without manifesting
the disease itself. A similar phenomenon can be observed
in the murine model, where the dengue virus generally
will not cause pathology in wild type mice.
As Sydney Brenner rightfully quoted, “We don’t have

to search for a model organism anymore. Because we are
the model organisms” – the indigenous populations serve
as a natural model to deepen our understanding of
genomic-environmental-phenomics interactions.
Take the indigenous populations of Peninsular Malay-

sia (locally known as Orang Asli) as an example. These
populations are classified into three major tribes, namely
the Negrito, Senoi, and Proto Malay, each of which is
further categorized into six sub-tribes. Archaeological and
population genetic studies suggest the possibility of these
populations inhabiting the Southeast Asia region more
than 50,000 years ago [54,55]. Although genome
sequencing of these populations has been reported, such
research has been rather modest [54,56] compared to
many genome sequencing initiatives worldwide.
Traditionally, the Orang Asli inhabit remote areas

neighboring the tropical rainforest. Because of this, the
majority of these tribes were nomadic hunter-gatherers or
swiddening agriculturalists that practiced egalitarianism.
Specifically, the Proto Malays were more settled down
and demonstrated advanced farming practices. Due to the
nature of the tropical rainforest, the Orang Asli were
exposed to numerous environmental stress stimuli,

including poor personal hygiene, parasites and pathogens,
as well as a lack of dietary nutrition. However, in the last
several decades, certain Orang Asli communities have
been relocated to semi-urban areas due to unavoidable
modernization and the government’s initiative to alleviate
poverty [57]. Consequently, there has been an increase in
the prevalence of metabolic syndromes within the Orang
Asli, especially among those being resettled near urban
areas. Yet, the trajectory of the reported incident rates is
still slower than that of the mainstream populations [58–
60].
Given such ‘natural’ exposure to the environmental

stressors of the tropical rainforest and a fairly ‘con-
trollable’ lifestyle and diet, attribution to any observed
phenotypic variation could be narrowed down to the
variability of intrinsic factors, thus comprehending the
resiliency of these populations would be biological
meaningful.

PHENOTYPIC STUDIES OF INDIGENOUS
POPULATIONS

Genomic and phenomic studies of indigenous populations
worldwide have been largely underrepresented. Until
2019, indigenous populations only accounted ~0.02% of
all GWAS conducted [61,62]. Indeed, most global large-
scale genomic research studies lack representation of
indigenous populations (to name a few, the HapMap
Project; 1,000 Genomes Project; Genome Aggregation
Database (gnomAD); Simons Genome Diversity Project).
Unfortunately, only a handful of studies reported their
respective genomic structures and population histories
[56,63–70]. Studies that correlate their genomic structure
and phenotypes have been primarily focusing on
identifying signatures of positive selection [71–74].
Research related to phenome-wide association studies
(PheWAS) or phenomics of indigenous populations have
been scarce, as evidenced by a PubMed search (on 18th
Dec 2020) that revealed no publications related to this
topic.
Phenotypic research carried out on the indigenous

populations were largely related to disease traits,
noncommunicable diseases have been of interest in recent
years [58–60,72,75–77]. Numerous studies reported high
prevalence rates of infectious diseases (e.g., plasmodium,
soil transmitted helminths, viral infections) among
indigenous populations [78–83], yet many did not
demonstrate symptoms of severe manifestations. Intrigu-
ingly, some indigenous populations exhibit unique
phenotypic characteristics that cannot be explained
merely by environmental exposure. A striking example
is the Negrito populations of Peninsular Malaysia who
predominantly inhabit the remote areas of Northern
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Peninsular Malaysia and demonstrated an average blood
pressure higher than other populations, despite minimally
attributed to hypertension risk factors [84]. In addition,
studies conducted on inflammatory and endothelial
activation biomarker levels suggest that genetic factors
may be, in part, a plausible explanation of lower
cardiovascular disease risk among the Negrito popula-
tions compared to other populations [58]. In contrast,
studies conducted on hypertension and cardiovascular
diseases in mainstream populations would be challenging
since these populations are exposed to various risk factors
(e.g., sedentary lifestyle, stress stimuli, excess salt intake,
poor diet, pollution, poor health awareness) and eliminat-
ing these factors would pose a great challenge.
Another example is the Greenlandic Inuit population

who live in extreme arctic climates. By consuming a low-
carbohydrate diet, they rely primarily on fatty acids and
ketone bodies as their main source of energy. The Inuits
have lower levels of cardiometabolic risk factors for the
same level of body mass index (BMI) or waist
circumference (WC) compared to Europeans [85], but
have shown a significant increase in type 2 diabetes
mellitus over the last 30 years [86].

CHALLENGES AHEAD

While investigating the phenomics of indigenous popula-
tions sounds promising, several challenges and trade-offs
in contrast to mainstream populations are acknowledged
as followed:
(i) Large-scale genome sequencing initiatives on

diverse indigenous populations, in particular those within
Southeast Asia, are essential. This is because Southeast
Asia houses approximately 70% of the global human
genetic diversity. Indeed, the fact that the 1000 Genomes
Project data does not sufficiently cover the global human
genetic diversity [87] highlights the need for global
collaborative initiatives to complete the catalogue of
human genetic variations.
(ii) Comprehensive and accurate phenotyping is crucial

to the improvement and advancement of modern preci-
sion medicine. However, it is practically difficult to
collect complete sets of phenotypic data and biological
samples (e.g., blood, urine, saliva, tissue, imaging data)
from the same individual. Such data fragmentation poses
challenges to downstream analysis [88]. Substantial
efforts are required to engage with indigenous commu-
nities, establish trust and mutual respect, in order to ease
the process of sample and metadata collection.
(iii) The majority of indigenous populations have a

small population size, which consequently means that
genetic variations would be too small to (a) detect

mutations with large effects; and (b) explain variants
commonly observed in other populations. Of particular
importance, the statistical power of attributing the
phenotypic variability to genetics or environmental
exposures may be restricted [53]. This is even more
challenging when the phenotypic data collection is
prospective, whereby follow-ups are required to measure
changes or trends. Alternative analysis pipelines are
required to overcome these restraints, without compro-
mising the biological effects.
(iv) Extending from (iii), the issue of replicability

within indigenous populations may arise due to a lower
statistical power resulting from a small sample size. In
addition, the power of study may be confounded by a high
inbreeding rate in the indigenous populations. However,
considering the relatively homogenous genotype and
environmental exposure, a proper study design may be
able to mitigate the potential error, for example, selecting
the top percentile versus the bottom percentile of a
quantitative trait from an indigenous cohort.
(v) The revolutionary change of the field of life

sciences and materialization of precision medicine
(Fig. 1) will eventually face a ‘data tsunami’. Scientists
will be overwhelmed by huge, diversified, and compli-
cated metadata. Therefore, harmonizing protocols and
analysis pipelines that integrate such diversified data are
crucial. However, this approach will undoubtedly lead to
drastically higher costs for experimental procedures,
infrastructure establishment, and analysis pipeline. Con-
sequently, this may not be affordable to many developing
countries, especially those in Southeast Asia. To this end,
establishing an integrated genomic-phenomic database
for indigenous populations would be meaningful [89] to
systematically organize the resources for future reference.
In contrast, despite heterogeneous genetic make-up and

environmental exposure, there are several pros to study-
ing the mainstream populations. Due to their large
population sizes:
(i) Collection of genotypic and phenotypic data is

relatively less burdensome. In addition, the availability of
reference panels (e.g., 1000 Genomes Project and the
GnomAD database) allows for more accurate genotype
imputation compared to indigenous populations that lack
a representative reference panel. In addition, there is a
lower possibility of inbreeding within mainstream
populations as opposed to indigenous populations.
(ii) The statistical power to detect mutations with

greater genetic effects and genetic variation responsible
for phenotypic variability would be higher. In addition,
the issue of replicability could be mitigated.
For the ease of comparison, the pros and cons of

researching indigenous and mainstream populations are
listed in Table 1.
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CONCLUDING THOUGHTS

The completion of the human genome sequence in 2000
had brought a world-shattering shift of paradigm to
genome medicine research. Since then, significant
technological advancements have drastically reduced the
cost of genome sequencing within a relatively short
period of time, increasing both its output quality and
quantity. The establishment of the human genome-
phenome reference is anticipated to provide a more
complete understanding of the origins and diversity of
various human traits and diseases, ultimately, to create a
new translational medicine paradigm for optimizing and
improving healthcare and patient management. Provided
that the aforementioned challenges can be overcome, the
indigenous populations serve as an ideal model popula-
tion to excavate our understanding on genomic-environ-
mental-phenomics interactions.
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