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Background: A key step in gene expression is the recognition of the stop codon to terminate translation at the correct
position. However, it has been observed that ribosomes can misinterpret the stop codon and continue the translation
in the 3'UTR region. This phenomenon is called stop codon read-through (SCR). It has been suggested that these
events would occur on a programmed basis, but the underlying mechanisms are still not well understood.

Methods: Here, we present a strategy for the comprehensive identification of SCR events in the Drosophila
melanogaster transcriptome by evaluating the ribosomal density profiles. The associated ribosomal leak rate was
estimated for every event identified. A statistical characterization of the frequency of nucleotide use in the proximal
region to the stop codon in the sequences associated to SCR events was performed.

Results: The results show that the nucleotide usage pattern in transcripts with the UGA codon is different from the
pattern for those transcripts ending in the UAA codon, suggesting the existence of at least two mechanisms that could
alter the translational termination process. Furthermore, a linear regression models for each of the three stop codons
was developed, and we show that the models using the nucleotides at informative positions outperforms those models
that consider the entire sequence context to the stop codon.

Conclusions: We report that distal nucleotides can affect the SCR rate in a stop-codon dependent manner.

Keywords: translational readthrough; stop codons; translational termination; ribosomal density profiles; nucleotide
usage frequency

Author summary: Sometimes ribosomes can misinterpret the stop codon and continue the translation to produce an
extended protein. These events can occur by chance, as well as, by a programmed mechanism. However, the basis of this
mechanism is still not known. In this paper, we report that the codon usage bias, at the end of the transcripts with UAA
stop-codon, are a key determinant of the stop codon read-through. The non-optimal codon usage suggests that the
canonical interpretation of the UAA codons might require ribosomal pause at the end of the coding region of the
transcript.

INTRODUCTION

Protein synthesis is completed in both, prokaryotes and
eukaryotes, when ribosomes encounter one of the three
termination codons (UAA, UAG and UGA). This final
step involves the recognition of a termination codon,
and the release of the completed polypeptide from the
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last tRNA, followed by the dissociation of ribosomes
from mRNA. In eukaryotes, the stop codon recognition
is based on the mRNA compaction driven by the
interaction of eRF1 with the nucleotide A1825 of 18S
TRNA [1]. There exist also mechanisms that can lead
ribosomes to continue translation beyond the first
termination codon, resulting in a fraction of the
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synthesized proteins that include additional amino-acids
[2—6]. It should be noted that the “failure” of the
programmed translation termination in the stop codon is
not merely a translational error. In fact, several
biologically important proteins are synthesized as a
result of functional translational read-through [7—10].
Indeed, beyond the classical mechanism of stop, some
alternative modes of suppression of the translation
termination are known: (i) ribosomal frameshifting [11,
12], (ii) misreading the termination codon by suppressor
tRNAs [13, 14], and (iii) stop codon read-through (SCR)
[15=17]. In the last case, instead of the recognition of
the termination codon by the release factor eRF1, a near-
cognate tRNA accommodates in the ribosomal A-site
and a new amino acid is incorporated into the
polypeptide chain. In this way, the competition between
the release factor eRF1 and a near-cognate tRNA with
the ability to pair 2 of the 3 positions of the stop codon,
define the efficiency in the termination process of
protein synthesis. The efficiency of this termination
process varies between the three stop codons. In fact, it
is known that UGA codon has the highest stop codon
leakage rate, but also the lowest fidelity; that UAG is the
most trusty stop codon, and that UAA has the highest
fidelity [4, 8, 18, 19]. Furthermore, the misreading rate
can be affected by the nucleotide context around the
stop codon [4, 17], but also by regulatory elements loca-
ted long away on the transcript [8, 13, 16]. Moreover, it
also can be induced by pharmacological agents [20—23].
The mechanisms that operate this regulation are still not
well understood and remains elusive. At this point, it
would be convenient to define as a basal SCR, those
events in which translational read-through dependent
solely on nucleotide context around the stop codon. It
have been estimated that the basal stop codon leakage
rate is lower than 0.1% [22], but there exist factors that
can increase read-through by several orders of
magnitude, resulting in rates higher than 1% [8, 22] and
suggesting that SCR is a functional recoding mechanism
to extend the proteins at the C-termini [17]. This
programmed SCR offers the organisms another way to
expand the capacity of genomes, other than splicing.

The rules governing the efficiency of SCR still remain
poorly understood. Functional SCR was originally
discovered in the bacteriophage QB [24] and in the
tobacco mosaic and barley yellow dwarf viruses [25,
26]. More recently, SCR was documented on some few
genes in fungi [5, 27] and higher eukaryotes, such as -
globin gene in rabbits and syn and hdc genes in
Drosophila melanogaster [15, 28, 29], to mention some
few examples. However, by the use of different systems
biology approaches, in the last years, some hundreds of
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new SCR events have been identified in several
metazoan genomes, suggesting that this is a pervasive
mechanism. Among these analyses we can mention the
comparative phylogenetic studies [4, 30, 31], the
ribosome profile based approach [32], and a linear
regression based model for analysis of stop codon
context [33].

The phylogenetic approach applied to twelve
Drosophila genomes identified more than 280 genes
undergoing SCR. Interestingly, one third of these genes
contains UGA codon followed by C [4]. Moreover, an
improved comparative method performed recently,
added more than 50 possible SCR events previously
undetected in D. melanogaster, and 353 in the genome
of Anopheles gambiae [31]. Furthermore, the mRNA
regions that are being actively translated can be
recognized by the ribosome profiling technique [34],
which might contribute to identify those sequences
occupied by ribosomes downstream of the stop codon. A
partial examination of the ribosomal footprint profile
from D. melanogaster embryos and S2 cell line
identified 350 SCR putative events [32], including 43
previously detected by the phylogenetic approach [4].
More recently, Schueren et al. have introduced an in
silico method based on a linear regression analysis
between SCR frequencies and their respective sequence
context of 15-nt at stop codon [33]. They used 66
experimentally assessed sequences from human genes
[22] as a training set, obtaining a model with the ability
to quantify the influence of the stop codon context on
the SCR. In this way, they have predicted 57 candidates,
6 of which have already been experimentally confirmed
[8, 35]. The advantages and weakness of these appro-
aches have been reviewed in [10].

In this work, we expand and combine the last two
approaches. First, we examined the ribosome profile of
6739 transcripts from D. melanogaster experimental
embryos, selecting 1176 SCR events. The SCR
frequencies and the associated sequence context at the
stop codon were used as a training set for the subsequent
regression analysis. The large set of SCR frequencies
obtained by the ribosome profiling technique allowed us
to formulate more complex models. In this sense, we
take into account a context of 60 nucleotides length and
a procedure to reduce the number of parameters to be
determined in the regression step.

Unlike other models, our modeling approach is
applied to each of the three stop codons separately. The
results that emerge from our analysis are somewhat
surprising. Indeed, our approach reveals that context
sequences in transcripts with high rates of SCR
associated with stop codons UGA and UAA are quite
different.
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RESULTS

After carefully analyzing the ribosome profile of 6739
transcripts expressed during the early embryo stage of
D. melanogaster, we have identified 1301 cases
displaying no null ribosome density beyond the
annotated stop codons. Fig. lA shows the ribosome
density profile associated with transcript FB0077517 (A
isoform of Snx/ gene), which does not present evidence
of SCR. In fact, there is not any complete ribosome
footprint read mapped downstream to the annotated stop
codon. Moreover, the small tail of 20 nt is associated
with the footprints at the stop codon position, where the
ribosome is released. On the other hand, when ribosome
read-through the stop codon, the ribosome (density)
profile presents a ribosome density between the
annotated stop codon and a second stop codon in the
3'UTR. This is the case of the transcript FB0300828 (F
isoform of RpSi154a gene) (Fig. 1B). While its density
level is lower than the one recorded in the coding
region, it corresponds to a substantial number of reads
aligned to a transcript portion of 170 pb. In fact, this
kind of ribosome density pattern have been considered

40  FBtr0077517

to constitute a reliable marker of SCR events [31, 32].
Some of the SCR events identified in this work have
been previously reported. Indeed, 283 candidates have
been reported by Jungreis et al. [4]; another 307 by
Dunn et al. [32]; and 486 were annotated in Flybase
[36].

Thus, we are reporting now 1176 cases of putative
SCR events that have not been previously detected. Due
that we examined a greater number of ribosome density
profiles, using different ribosomal fingerprint alignment
methodologies, we found and report now a greater
number of events than those reported by Dunn et al.
[32]. Among others identified in our analysis, we
present as an example a simple SCR event in the
transcript FBtr0072583 (C isoform of CGI/3887 gene)
which is not reported in FlyBase (Fig.2). Multiple
alignment of the 30-residues extensions from D.
mauritiana, D. simulans, D. sechellia and D. erecta
reveals a high local synteny level among these species.
Supplementary Figs. S1-S3 present other three
examples of single, double, and triple SCR events
corresponding to the A isoform of the ghiberti gene
(FBtr0076462), CG11070 gene (FBtr0079297) and the
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Figure 1.

Examples of ribosomal density profiles with and without SCR. The upper panel shows the ribosomal profile of

the A isoform of the Snx1 gene (transcript FBtr0077517), which does not present SCR. The green vertical line in the position
zero corresponds to the translation start codon, delimiting the CDS of the 5' UTR end. The red vertical lines indicate the location
of the annotated stop codon (UAA) at position 1376 nt, and a posterior stop codon (UAA) located 129 nt later. The 3' UTR region
after the annotated stop codon (inset) shows the absence of ribosomal reads, as canonical translation termination is efficient.
The lower panel shows a ribosomal profile with evidence of SCR in the F isoform of the RpS715Aa gene (transcript
FBtr0300828). This example presents an extension after the annotated stop codon (UAG), located at position 393 nt respect to
the start codon. The ribosomal density is extended beyond the first stop codon, reaching the second stop codon (UAA) located

189 nt after it (inset).
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Figure 2. An example of phylogenetic conservation of a SCR extension. Ribosomal density profile of the C isoform of the
CG13887 gene (transcript FBtr0072583), with a SCR event (top panel). This 30 amino acid extension shows a high
conservation level regarding the extensions that correspond to 4 other species of the same genus (bottom panel).

isoform A of the Nurf-38 gene (FBtr0072343)
respectively.

The SCR events reported here have been registered
for the three stop codons individually, identifying 306
for UGA, 555 for UAA and 440 for UAG codons. The
gene and transcript IDs, as well as several characteristics
of these SCR are listed in Supplementary Table S1. The
ribosome profiles associated with all these transcripts
are deposited in zenodo. Based on the ribosome density
profile, we estimated the SCR rate for each of all these
events. Because the ribosome covers approximately 30 nt,
a second stop codon close to the annotated one can alter
the local ribosome density, generating an unreliable
estimation of the SCR rate, those cases in which the
distance between the annotated stop codon and the next
in frame stop codon is less than 18 bp were excluded for
further analysis. Taking into account this feature, we
selected 238 SCR events for the UGA codon, 447 for
UAA and 341 for UAG. Finally, based on this more
confident set, we analyzed the distribution for each one
of the three stop codons separately.

The frequency of the SCR rate for each stop codon
shows that for small SCR rates (< 20 x 107%), most of the
events are almost uniformly distributed or with a slight
tendency to the UAA and UAG codons; while for higher
SCR rates there exists a deviation to the UGA codon
(Supplementary Fig. S4). When programmed SCR is
associated with high rate, as suggested in [9, 37], this
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result might be indicating that programmed SCR would
be encoded in a sequence context using a UGA codon.
In this sense, it is interesting to analyze the frequency of
the nucleotides distributed around the stop codons. The
left panels in Fig.3 show the SCR rate for the
nucleotides located upstream from stop codons, while
those on the right show the frequency for the nucleotides
located downstream. For the case of the UGA codon
(top panels), a preference for C and G nucleotides for
both, upstream and downstream adjacent positions is
evident. This is in agreement with the fact that UGA-C
is one of the less frequent used 4-nt context in
transcripts with efficient termination [4]. The results
also show that the fraction of SCR events with higher
rate is greater in the case of UGA codon than for the
other two stop codons.

With the aim of find out which nucleotides and
positions would play a role in the SCR processes, we
performed an alternative statistical analysis, beyond the
simple frequency of 4-nt context. To do that, we
computed the frequency of nucleotides usage in a larger
stop codon context (SCC) in transcripts presenting SCR
events, comparing it with the frequency of nucleotides
usage in the same positions, but covering a large control
set constituted of transcripts without SCR events. This
set will be denoted here by TS0. As a SCC sequence, we
considered a region of 49-nt before the stop codon and
18-nt after it (i.e., 70 nucleotides length). The
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Figure 3. Frequency of adjacent nucleotides. Frequency of ribosomal leak rate for the nucleotides left- and right-adjacent to
the stop codon (left panels and right panels, respectively). The upper panels show histograms associated with the UGA stop
codon, the middle ones show histograms associated with the UAA stop codon, and the lower panels histograms associated with
the UAG stop codon. The adjacent nucleotides A, C, G and U are identified by yellow, blue, green and red colors, respectively.

comparison was made through the Kullback-Leibler
(K-L) divergence, as indicated in methods. The results
show that low values of divergence denote a similar
frequency usage of nucleotides in both groups of
transcripts, while higher values indicate a preferential
usage (bias) linked to SCR events. To go deeply in the
analysis, we performed this study for each stop codon
separately, using two different sets of transcripts
associated with SCR events: (i) transcripts with SCR
rate greater than 3x10™* (transcripts set 1, TS1), and
(ii) transcripts with SCR rate greater than 20x 107
(transcripts set 2, TS2). We expected that positions
where the K-L divergence (preference usage) increases
by the use of the set with high SCR rate were more
relevant to exert influence on the SCR. In Fig. 4 we can
see the resulting two divergence values for each position
of the analyzed SCC. Blue dots correspond to
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divergence values computed using transcripts that
belong to TS1, while yellow dots correspond to the
values computed using transcripts associated with higher
SCR rate (i.e., TS2). From here on, all positions will be
referred with regard to the stop codon position. In
addition to the K-L divergence calculation for each
position, we also performed a Fisher’s exact test to
corroborate the statistical significance of the differential
usage of GC nucleotides compared to AU nucleotides,
in the different transcript sets. Supplementary Table S2
shows the nucleotide occurrence at each position and the
statistical significance of the Fisher’s exact test (p-
values) of GC and AU occurrence. In the case of the
UGA codon (Fig. 4A), we observed that the downstream
position adjacent to the stop codon has a preference
usage for the nucleotide G. In fact, 34.4% of the
transcripts associated with higher SCR rate present this
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Figure 4. K-L divergence values analysis of the context sequence. D(r) of the nucleotide frequency usage in position r for
the context sequence associated to each stop codon: UGA (A), UAA (B) and UAG (C), indicated at positions 1-3. Blue and
yellow dots correspond to the divergence values calculated for the transcript sets associated with moderate (TS1) and high
(TS2) ribosomal leakage rates, respectively. The nucleotide positions in the context sequence are represented in the horizontal
axis, while the divergence in its frequency usage is reflected in the vertical one.

nucleotide, while the nucleotide T is the less frequent
(19.3%). Other downstream positions with high
divergence values are +9, +10, +11, +19 and +20.
Moreover, some of them are even associated to higher
divergence values than position +1. For example, the
frequency usage of nucleotides A and C on TSO at
position +11 is 27.4% and 23.8%, respectively.
However, these nucleotides present very different
preferences usage at the same position on TS2, in which
the percentages change to 14% and 32.3%, respectively.

Regarding the upstream positions, while —1 present a
small divergence value, a significant nucleotide
preference is found at position —2, where the frequency
usage of nucleotide A reaches 53.8%, and GC
nucleotides are significantly less frequent than AU (p-
values > 0.05 level). There are also high divergence
values at several distal positions, as at —12, =21, —40
and —47. At these positions, the divergence value
substantially decreases when the observed nucleotide
frequencies in TS1 are used, suggesting that nucleotide
at these positions play a role in the SCR rate. In
particular, the position with higher divergence is located
12 nt upstream of the stop codon. At this position we
found that the frequency usage of nucleotides A, U and
G, on TS0, are 30.9%, 16.7% and 30%, respectively.
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The frequency usage of these nucleotides on TS2
changes to 48.4%, 9.6% and 20.4%, respectively.
Additionally, we observed a cluster (between —18 and
—12) where divergence values obtained with transcripts
belonging to TS2 (yellow dots) are significantly greater
than those obtained with transcripts belonging to TSI
(blue dots), suggesting an important role in determining
the rate of SCR. Furthermore, our analysis shows that
there are more distant positions (e.g., —40 and —47),
having a remarkable nucleotide preference usage,
indicating that they are also important for the SCR
process. In particular, we observed a strong usage bias
in nucleotides A and U at position —47, which present
frequencies of 35.5% and 16.1%, respectively, in TS2.
Thus, in contrast to previous studies [4, 32], our analysis
suggests that distal positions could have also a key role
in SCR.

In the case of transcripts with the UAA stop codon
(Fig. 4B), the upstream position flanking the stop codon
have divergence values higher than in the UGA case,
with frequencies of 41.7% (nucleotide C) and 13.4%
(nucleotide A) for the most and least used nucleotide at
position —1. On the other hand, the most and least used
nucleotides at position +1 were G and C, showing
frequencies of 41.7% and 13.4%, respectively. We have
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also observed a high divergence value at position —4,
associated with a strong usage bias in nucleotide C,
which has a frequency of 48% in transcripts associated
with higher SCR rate. Other interesting feature revealed
by the divergence analysis of the transcripts with SCR,
using UAA as stop codon, is that there is a remarkable
nucleotide preference usage at the third position of the
codon as it is seen, for example, at positions —1, =4, =7,
—-10, —13, —-16, —19, =31, —40 and —49. All these
positions are associated to higher content of GC
nucleotides when compared with AU nucleotides. Thus,
the GC3 content is significantly higher at the 0.01 level
(see p-values in Supplementary Table S2). In fact, the
GC percentages at these positions are: 69.3, 71.6, 70.0,
72.4,72.4, 70.9, 70.1, 74.8, 66.1 and 78.7 respectively.
These values are much higher than 60.7, which is the
average GC content observed at these positions when
computed over all transcripts ending in the UAA stop
codon. This pattern remarkably differs compared to the
cluster found in the UGA case, indicating that
mechanisms of SCR in these codons could be not the
same. There is a remarkable nucleotide preference usage
observed at position —49, the most distal position
analyzed in this work. Here, the frequency usage of
nucleotide G represents 44.9% of the transcripts in TS2,
while the nucleotide A represents only 6.3%. In the case
of transcripts with the UAG stop codon, we observed in
general lower divergence values than in previous cases,
with some exceptions at positions —48, —29, —12, +8§,
+15, +18 and +20 (Fig. 4C). The position —12 of TS2
transcripts presents significantly higher GC content than
control transcripts. Both immediately adjacent positions
to the UAG codon does not present any important
nucleotide bias respect to TSO.

In addition to correlating the nucleotide composition
with SCR rate at individual positions in a large SCC, we
also analyzed the probable existence of a correlation
between nucleotides at 2211 position pairs in the SCC.
As we detailed in methods, we computed the divergence
between the joint probability p,;; of nucleotides, at the
position pair i and j, and the expected probability
assuming statistical independence (i.e., p;X p;). Large
divergence values indicate that nucleotides appear in a
concerted manner at given position pairs. The Fig. 4A
shows some relevant position pairs for the UGA stop
codon, which present two nucleotides in a concerted
manner even at distal positions, being the pairs —40:—21,
—38:—12, —43:—10, —16:—15 and —21:—-10, some of the
most relevant. As an example, the pairs C:G and G:G
appears in 32.2% of the transcripts at positions —40:-21.
Perhaps, the most interesting case is represented by the
adjacent positions —16:—15, within the cluster indicated
in the previous analysis. In this case, the probability of
finding the nucleotide pairs C:A or G:G reaches up to
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1/3, when the expected value by chance is 1/16.

Another adjacent positions pair that presents
nucleotides in a concerted manner are positions 19:20,
downstream the stop codon. At these positions, the
occurrence of nucleotides C:A and G:C increases up to
30.1% of the cases, almost two-fold than the expected
value assuming independence (17.3%). In the case of
UAA stop codon, we found that the nucleotides G:C are
over-represented at positions —21:—4, respectively, with
a frequency of 22%. We have not identified statistical
dependence between the nucleotides at the third position
in different codons, indicating that, in this case, the GC3
content and not one specific pattern rich in GC3, is
associated with the high SCR rate. Regarding the UAG
stop codon, we observed a significant correlation at
three adjacent position pairs upstream the stop codon. In
this sense, positions pair —13:—12 evidences a
preference for the nucleotide pairs G:G, C:U and G:C,
which reaches up to 42.6% of the total cases. At
positions —9:—8, the probability to found the nucleotide
pairs G:A and A:A increases up to 33%, while at
positions —5:—4 the probability to found the nucleotides
pairs A:G and G:C is 29.5%.

The results of our divergence analysis, particularly
those related to Fig. 4B, suggest that the use of codons
could play a role in the final stretch of translation. It is
well known that the use of codons present bias in
different manners, and their frequency usage vary
between genes of the same organism [38], and even
between the different regions of the same gene [39]. In
this sense, some researcher have suggested that codon
usage could modulate the speed of protein synthesis [40,
41]. Since the synonymous codons are determined
mainly by the third nucleotide, it is then useful to
evaluate the content of GC3. Figure 5 shows the
behavior of the GC3 content in a set of transcripts
presenting a high rate of SCR (TS2, yellow lines) and
for transcripts that do not present SCR (TS0, black
lines). For those transcripts that do not show SCR, a
descending ramp in terms of GC3 content in the last 5
codons is evident in comparison with coding senquences
ending on UAA presenting SCR (Fig. 5B), where the
ramp is not present. We have also detected an ascending
GC3-ramp at the beginning of translation (see
Supplementary Fig. S5), that might be related to the
known fact that suboptimal codons at the 5' end
slowdown translation [42]. Thus, the result exhibited in
Fig. 5B suggests that SCR in coding senquences ending
on UAA can be mediated by the lack of ribosomal pause
at the end of the transcript.

Our working hypothesis is that the nucleotide
configuration in the SCC can increase the probability of
ribosomes interpreting the stop signal in an alternative
way, increasing the SCR rate. The divergence study
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Figure 5. GC3 content in SCR. The fraction of G or
C nucleotides at the third position in the codons vs
codon position for each stop codon: UGA (A), UAA (B)
and UAG (C). Yellow lines correspond to the values
calculated for the transcript sets associated with high
ribosomal leakage rates (TS2), while the black lines
correspond to all transcripts with the same stop codon
but excluding the transcripts with SCR. The position
corresponding to the stop codons was excluded from
the analysis

performed above determines which positions within the
SCC might be important in the determination of SCR
events and their rates. One possible way to corroborate
the role of certain positions is through predictive models
similar to those implemented by Schueren et al. [33],
but performing them in a little more sophisticated way.
In this sense, we have developed two linear models that
differ in the positions incorporated as relevant
information. After determining the coefficients of the
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models (see Methods), we estimated their performance
to predict the SCR rate. Then, we compared the
predictive performance of a model that takes into
account the nucleotide content for the whole SCC, with
another model that only takes into account the
nucleotide content in a given relevant position. These
positions are those indicated by black arrows in the
upper panel of Fig. 6A. For each case, the model
parameters were determined performing a linear
regression, using SVD as indicated in the Methods
section. Then, the predictive power of the model was
evaluated using a particular set of test sequences for
each stop codon. These test sequences include
transcripts that present SCR, as the annotated ones in the
FlyBase database, and that were not used for the
determination of the parameters values of the models.
Furthermore, the test set includes 50 sequences that do
not display SCR for the same stop codon. Although the
model predicts the leak rate associated with a given
context sequence, the evaluation of its performance was
carried out through the calculation of the fraction of
false positives and false negatives, and not by the
difference between the experimental ribosomal leak
rates predicted by the model. Namely, false positives are
those sequences that are not associated with SCR,
although the model predicts a positive leak rate. On the
other hand, false negatives correspond to those
sequences that present SCR according to the FlyBase
database, but for which the model predicts a negative
leak rate. The goal is to obtain models that minimize
both types of errors while maximize the correct
predictions.

Figure 6A shows the false positive and false negative
fractions obtained from three different models
developed for transcripts with the UGA stop codon, and
using different positions in the context sequence. The
first pair of bars corresponds to the model that only
takes into account six contiguous positions on both sides
of the codon, in a similar way performed by Schueren
et al. [33]. This model identifies the existence of SCR
events in almost 80% of the transcripts that present this
phenomenon. However, it has a high fraction of false
negatives. This fraction decreases by half when we
extend the model to 29 positions. On the other hand, the
inclusion of the 29 positions decreases the prediction of
the transcripts that present SCR. This fact suggests that
the relationship between the number of sequences in the
training set and the number of parameters to be deter-
mined has a considerable impact on the performance of
the modeling. That is, when the number of sequences in
the training set is kept constant, to increase the number
of positions used in the model does not guarantee a
better predictive power. Keeping this in mind, it is
interesting to consider evaluating a model that
incorporates only the most informative positions,
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reducing the number of parameters to be determined. In
this sense, the model that only uses the 18 optimal
positions (black arrows) has lower false positive and
negative rates than the other models.

Similarly, Fig. 6B shows the false positive and false
negative fractions obtained from three models
corresponding to the UAA stop codon, which use
different positions in the context sequence. The first pair
of bars corresponds to the model inspired by Schueren
et al. [33], which only takes into account 6 contiguous
positions on both sides of the UAA codon. This model
identifies the presence of SCR events in almost 80% of
the candidate transcripts. However, it has a high fraction
of false negatives. As in the case of the UGA codon, this
fraction decreases by half when we extend the model to
29 positions. On the other hand, the inclusion of the 29
positions increases the prediction of transcripts that
present SCR by 0.2%, although the proportion of this
increment is lower than the previous case. Again, this
indicates that the relationship between the number of
sequences in the training set and the number of
parameters to be determined (i.e., the number of
positions used) alters the performance of the model, and
not guarantee a greater predictive power. In this case,
with the aim of reduce the number of parameters to be
determined, the model was evaluated incorporating only
the 13 most informative positions (black arrows in the
figure). This model shows false positive and false
negative rates markedly lower than the other ones, being
both rates significantly lower than the 18 position
optimal UGA codon model. Furthermore, this false
negative rate is the lowest when the optimal positions

evaluated for each stop codon are compared.

Finally, Fig. 6C shows the false positive and false
negative fractions obtained from four different models
for the UAG stop codon, which use different positions
in the context sequence. The first pair of bars
corresponds to the model that only takes into account six
contiguous positions on both sides of the UAG stop
codon. This model identifies the presence of SCR events
in almost 80% of the candidate transcripts. However, it
predicts a high fraction of false negatives. This fraction
decreases considerably when we extend the model to 29
positions. On the other hand, the inclusion of the 29
positions increases by 0.15% the prediction of the
transcripts that present SCR, although this increment
proportion is the smallest observed for the three cases.
The reduction in false negatives linked to a slight
increase in false positives observed here, would indicate
that the relationship between the number of sequences in
the training set and the number of parameters to be
determined favorably alters the performance of the
model. However, the evaluation of the model, when
only the most informative positions are incorporated,
shows a better predictive power than the other models,
by reducing the number of parameters to be determined.
In this case, the model that only uses the optimal 25
positions (black arrows in Fig. 6), shows an appreciably
lower rate of false positives and false negatives than the
other models. It is even observed that the false positive
rate is the lowest compared to all the applied models;
while the false negative rate is the highest among the
three models that use the optimal positions in the
context of the stop codon.
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Figure 6. Predictive models for different size context sequences. The top panels illustrate the nucleotide positions in the

context sequence, used by three different linear models to predict SCR for the stop codon transcripts UGA, UAA, and UAG,
respectively. Black braces indicate the 12 positions considered by [33], and the red ones consider an extended pattern including
the 29 positions contiguous to the stop codon. Black arrows consider only 18 positions selected due that they have the highest
divergence values associated. The bars in the lower panel show the fraction of erroneous predictions: false positives (pink) and
false negatives (light blue), for the three models indicated in the upper panel.
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DISCUSSION AND CONCLUSION

Based on ribosomal leak rate estimated from Ribo-seq
data, we determined the ribosomal density profiles for
the 6739 observed transcripts of Drosophila
melanogaster. The examination of 3'UTR regions of
these profiles allowed us to identify 1176 putative SCR
events, with an incidence of 23%, 33%, and 44% for the
UGA, UAG, and UAA stop codons, respectively.
According with previous findings [8, 18, 31], we also
observed that SCR events associated with the UGA
codon have a higher ribosomal density, indicating a
greater ribosome leak rate, particularly with UGA-C.
The fact that a high rate of ribosomal leakage is
associated with the presence of a pyrimidine at position
+4 might be in agreement with previous findings, since
electron cryo-microscopy data suggest that the
compaction of mRNA by eRF1, which is necessary for
codon recognition stop, is facilitated when +4
corresponds to a purine and not to a pyrimidine [1]. The
correlation between this increment in the ribosomal
density and the nucleotide usage frequency, immediately
after the stop codon, may indicate that SCR events are
caused by an implicit mechanism in the nucleotide
sequence rather than translational decoding errors [17,
32, 43, 44]. In order to identify patterns that can predict
SCR events, in the present study, we evaluated the
influence of the nucleotides in a large stop codon
context region. This analysis was performed by the
Kullback-Leibler measure of divergence, which indi-
cates the presence of tendencies in the use of nucleotides
at each position. We found high divergence values at
various upstream distal positions, many of them specific
to each stop codon. For example, the UGA codon shows
high divergence at positions —2 and —12, using mainly
the nucleotide A (53.8% and 48.4% respectively). The
positions with a strong tendency to the use of a certain
nucleotide, may indicate a marked influence on the
occurrence of programmed SCR events. Furthermore,
our study has demonstrated a high frequency usage of
nucleotides G or C (around 75%) in the third base of
several codons of transcripts with the UAA stop codon.
This is higher than the proportion previously observed
in the same positions of the control group (60%), and
the frequency expected by a uniform use of codons
(50%). This notable bias differs widely from that
observed in UGA, indicating that the SCR mechanisms
would be operating under patterns of differential use of
specific nucleotides at distal positions for each type of
stop codon, something that was not contemplated in
previous studies [4, 17, 32]. In the case of transcripts
with the UAG stop codon, the divergence in nucleotide
usage was generally smaller than the ones observed for

© The Author (s) 2022. Published by Higher Education Press

UAA and UGA, and did not show biases in adjacent
positions. Our analysis of nucleotide pair divergences
indicates the existence of very few pairs with high
divergence, and that these are not located in a
coordinated manner necessary to support the typical
base paired hairpin structures. Therefore, they do not
seem to support the hypothesis that secondary structures
have a role in SCR.

We are proposing now a set of regression models
which differ on the size of the SCC used to make the
prediction. Indeed, the aim was to compare the influence
of such nucleotides on the leak rate of each stop codon
independently, in order to corroborate the role of the
most relevant positions identified by the K-L divergence
analysis. The model with 6+6 positions contiguous to
each stop codon identifies SCR events in 80% of the
transcripts evaluated, but presents a high fraction of
false negatives for all cases. The model that uses a SCC
with 29 positions contiguous to the stop codon
considerably reduces the number of false negatives
obtained by the previous model, but increases the
fraction of false positives. This shows that the size of the
context sequences used as a function of a fixed number
of training sequences does not guarantee a reliable
predictive power. On the other hand, the model that
includes only the positions with a high divergence value
associated with the context of each stop codon with SCR
(contiguous or not), was effective by significantly
reducing the rate of false positives and negatives with
respect to the two other models. Finally, the use of the
most informative positions regarding the level of
divergence within a context sequence constitutes a novel
and useful criterion for the development of computa-
tional tools such as the one presented here.

One of our most interesting finding is that, except for
the case of transcripts with UAA stop codon that present
high rate of SCR, there exists a lower GC3 content at the
5" end in almost all transcripts of D. melanogaster. The
presence of this codon bias could be related with the
ribosomal pause needed for the compaction of mRNA
and the posterior stop codon recognition [1]. Taking this
into account, we hypothesized that high GC3 content in
the last codons associated with coding sequence ending
on UAA could be led to a stop codon recognition failure
with the consequent ribosomal leakage. This hypothesis
might be contrasted by means of suitable molecular
biology experiments.

On the basis of the analysis detailed above, we would
wish to propose that divergence analysis could be used
as a criterion to select the most informative positions in
the modeling. Moreover, our results indicate that the rate
at which SCR events occur could be regulated by a
context greater than those proposed by previous studies
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[4, 33]. Furthermore, it is important to clarify the
relationship between the number of parameters and the
number of sequences. Although it is clear that the larger
the size of the training set, the better the parameter
fitting of the model; this is not the case in relation to the
number of parameters.

In conclusion, this extensive and deep study of the
existing relationship between most nucleotide positions
and ribosomal leakage rate allows not only the
recognition of a larger set of genes that might undergo
SCR process, but also reveals implicit regulatory
mechanisms at the nucleotide sequence, which might
regulate translational ending, having broad and relevant
biological implications across several kingdom.

METHODS

We used the raw data of ribosome footprint profiles
from Drosophila embryos (0—2 h) obtained by Dunn
et al. [32] (available for download at NCBI GEO,
accession #GSE49197). At first, ribosome footprints
reads were trimmed to remove the adapter sequence
using the Cutadapt software [45], giving as result that
reads shorter than 25 nt or with low-quality were
discarded. Further, we used the Bowtie 2 software [46]
for also discard the reads that align to ribosomal
sequences. Unlike to the analysis performed by Dunn
et al. [32], and in order to align the remaining reads to
the FlyBase Drosophila genome (version r6.03), we
used the Tophat software [47], which takes into account
also splice junctions. The resulting SAM files were
processed with SAMtools [48] to compute the ribosome
density profile (total number of ribosome protected

footprint fragments aligning to each nucleotide position)
of all transcripts (Fig. 7A).

The SCR rate, denoted here by p, which is associated
with each annotated stop codon, was computed by
dividing the cumulative ribosome density associated
with a C-terminal extension region, d.,, by cumulative
ribosome density associated with the coding region
immediately upstream of the stop codon, dcp,

6E!Xt

= b
Ocp

(M

O0cp Was computed taking into account that ribosomes
protect fragments of 28 to 29-nt-long, and that the P-site
of the ribosome is located at position 13, as shown in
Fig. 7B. Thus, we considered the region ranging the 14
nucleotides preceding the stop codons of the coding
region, and the 16 nucleotides following the stop codons
(Fig. 7B, C). For computing the cumulative ribosome
density associated with the extension, 6., Wwe
considered a 30-nt-long region that range 29 to 58
nucleotides downstream of the stop codon, as indicated
in Fig. 7B. In this way, we decreased the chance to
count ribosome protected fragments from the end of the
coding region as part of an extension, decreasing so the
number of false positive SCR cases. As putative cases of
SCR, we selected those transcripts that satisfy two
criteria: (1) ribosome-protected footprint fragments must
cover at least 90% of the extended region with a
minimum of 2 reads. (ii) SCR rate is greater than 0.005.
After selecting all compliant transcripts, each
associated ribosome density profiles was visually
inspected to discard artifacts and to choose only the
correct isoform. Then, we discarded those transcripts
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Figure 7. Ribosomal leak rate estimation. Panel A represents
3'UTR ends of the coding region delimited by the AUG start and U

a typical ribosomal density profile, distinguishing the 5' and
GA stop codons (vertical green lines). An enlargement of the

stop codon region and the contiguous C-terminal extension is shown in (B). Here, the ribosomal density accumulated during the

30 nt associated with these regions: 6. and &, is shown (light blu
to the UGA stop codon.

e). Panel C shows the location of the ribosome A-site relative
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with a second stop codon close to the annotate one, and
selected 238 SCR transcripts for the UGA codon, 447
for UAA and 341 for UAG stop codon. In this way, a
number of 1026 transcripts with at least one SCR event
were selected. All these positive cases of SCR were used
to build three different predictive models, each one for
every stop codon.

As there is not information about the size and
positions of the stop codon context (SCC) that can exert
influence on SCR events a priori, Schueren et al. [33]
considered a SCC of 15-nt long. That modeling was
restricted to consider a small SCC because the available
training set consisted of only 66 sequences. The large
size of the training set available here allows us to
explore more complex modeling (i.e., with large number
of entries). In this sense, we proposed a model in which
the SCR rate depends on the nucleotide x; at position i in
a SCC of 70 nucleotide length, 49-nt before the stop
codon and 18-nt after it. Thus, our model for the rate y
can be written in the following manner

where the asterisks in the summation indicate that the
index runs over the selected position and positions pairs.
The terms ao, b; and x; are the parameters of the model,
which must be determined. As the number of parameters
to be determined would be similar to the size of our
training set, this can lead to a poor performance of the
model. To overcome this difficulty, our idea is to
determine which positions of the SCC are more likely to
exert influence on SCR. Our working hypothesis is that
those positions that present a bias in the nucleotide
usage are more likely to affect the SCR rate; reaching in
consequence the more informative for the modeling. In
this sense, from all sequences of our training set we
computed the Kullback-Leibler divergence [49] D(r) at
position » of the SCC. This measure, defined as
D(r) = 3, pi(r)log(pi(r)/ p;), quantify how the frequency
usage of nucleotide i in the position r, denoted by p,(r),
is different from the frequency usage of this nucleotide
over the SCC of reference transcripts, denoted by p;.
Moreover, in order to also include in the modeling
information from position pairs, we also computed the

y=dot Ei]b i%Xis () following Kullback-Leibler divergence
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Figure 8. Numerical coding of the nucleotide sequence context. This illustrative diagram represents how the context
sequences are encoded numerically to feed the linear model. The * indicate the selected nucleotide positions. Each nucleotide
is encoded by a pair of 1 or —1. The procedure is performed for all context sequences and the matrix X is constructed.
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~ pij(r,s)
D(r,s) = Z Pij(rs s)log(m) ’

(i, j)pairs
where p, ;(r, s) is the frequency of the nucleotides i and j
at the positions r and s respectively, while p,(r) is the
frequency of the nucleotide i at the position . This
measure quantifies how the frequency of nucleotide
usage at two different positions is statistically correlated
in the sequences belonging to the training set. After
evaluating these divergences, we selected as variables
for our model the most informative individual positions.
As this step was performed independently for each
training set corresponding to one of three stop codon
signals, the resulting nucleotide positions are not
necessarily the same for the three training sets.

The relevant single nucleotides corresponding to
individual positions of the SCC can be represented by
two elements: (A — {1,1}, ¢ — {-1,1}, U— {1,-1} and
G — {—1,-1}). The encoding procedure is represented in
the Fig. 8. In order to simplify the notation for the
parameter estimation procedure, we noticed that the
Eq. (2) can be rewritten as y = wy-v, where w is N-
dimensional vector that include all coefficients to be
determined (i.e., w=(ay,b;), and v is an extended
version of the feature vector that encode the relevant
information of the nucleotide sequence. The training sets
consist of M pairs of input-output, represented by
D = {X,y}; where X is an N X M matrix of all sequences
in the training set. In this way, the columns of matrix X,
correspond to the M sequences, while the rows
correspond to the informative positions. The vector y
corresponds to M values of the SCR rate. For the
estimation of the model coefficients, we have used the
least-squares regression based on the singular-value
decomposition (SVD) of matrix X7, where superscript T
denotes the transpose matrix (i.e., X’ =U-S-V"); and
where U is a unitary M X N matrix of left eigenvectors,
S is a diagonal N X N matrix containing the eigenvalues
{s1,...,8y}, and V 1is a unitary N XN matrix of right
eigenvectors. Thus, the solution with the smallest L,
norm is given by w=y-U-diag(s;')-V’, and w-v
corresponds to the SCR rate predicted by the model for
a sequence feature vector v.
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