RESEARCH ARTICLE

Bilineage embryo-like structure from EPS cells can produce live mice with tetraploid trophectoderm

  • Kuisheng Liu 1 ,
  • Xiaocui Xu 1 ,
  • Dandan Bai 1 ,
  • Yanhe Li 1 ,
  • Yalin Zhang 1 ,
  • Yanping Jia 1 ,
  • Mingyue Guo 1 ,
  • Xiaoxiao Han 1 ,
  • Yingdong Liu 1 ,
  • Yifan Sheng 1 ,
  • Xiaochen Kou 1 ,
  • Yanhong Zhao 1 ,
  • Jiqing Yin 1 ,
  • Sheng Liu 1 ,
  • Jiayu Chen 1 ,
  • Hong Wang 1 ,
  • Yixuan Wang , 1,2 ,
  • Wenqiang Liu , 1,3 ,
  • Shaorong Gao , 1,2
Expand
  • 1. Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
  • 2. Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
  • 3. Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 200092, China
wangyixuan@tongji.edu.cn
liuwenqiang@tongji.edu.cn
gaoshaorong@tongji.edu.cn

Received date: 15 Feb 2022

Accepted date: 25 May 2022

Copyright

2022 ©The Author(s) 2022. Published by Oxford University Press on behalf of Higher Education Press.

Abstract

Self-organized blastoids from extended pluripotent stem (EPS) cells possess enormous potential for investigating postimplantation embryo development and related diseases. However, the limited ability of postimplantation development of EPS-blastoids hinders its further application. In this study, single-cell transcriptomic analysis indicated that the “trophectoderm (TE)-like structure” of EPS-blastoids was primarily composed of primitive endoderm (PrE)-related cells instead of TE-related cells. We further identified PrE-like cells in EPS cell culture that contribute to the blastoid formation with TE-like structure. Inhibition of PrE cell differentiation by inhibiting MEK signaling or knockout of Gata6 in EPS cells markedly suppressed EPS-blastoid formation. Furthermore, we demonstrated that blastocyst-like structures reconstituted by combining the EPS-derived bilineage embryo-like structure (BLES) with either tetraploid embryos or tetraploid TE cells could implant normally and develop into live fetuses. In summary, our study reveals that TE improvement is critical for constructing a functional embryo using stem cells in vitro.

Cite this article

Kuisheng Liu , Xiaocui Xu , Dandan Bai , Yanhe Li , Yalin Zhang , Yanping Jia , Mingyue Guo , Xiaoxiao Han , Yingdong Liu , Yifan Sheng , Xiaochen Kou , Yanhong Zhao , Jiqing Yin , Sheng Liu , Jiayu Chen , Hong Wang , Yixuan Wang , Wenqiang Liu , Shaorong Gao . Bilineage embryo-like structure from EPS cells can produce live mice with tetraploid trophectoderm[J]. Protein & Cell, 2023 , 14(4) : 262 -278 . DOI: 10.1093/procel/pwac029

1
Abad M, Mosteiro L, Pantoja C et al. Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 2013;502:340–345.

DOI

2
Aguilera-Castrejon A, Oldak B, Shani T et al. Ex utero mouse embryogenesis from pre-gastrulation to late organogenesis. Nature 2021;593:119–124.

DOI

3
Amadei G, Lau KYC, De Jonghe J et al. Inducible stem-cell-derived embryos capture mouse morphogenetic events in vitro. Dev Cell 2021;56:366–382.e9.

DOI

4
Anderson KGV, Hamilton WB, Roske FV et al. Insulin fine-tunes self-renewal pathways governing naive pluripotency and extra-embryonic endoderm. Nat Cell Biol 2017;19:1164–1177.

DOI

5
Baker CL, Pera MF. Capturing totipotent stem cells. Cell Stem Cell 2018;22:25–34.

DOI

6
Beccari L, Moris N, Girgin M et al. Multi-axial self-organization properties of mouse embryonic stem cells into gastruloids. Nature 2018;562:272–276.

DOI

7
Beddington RS, Robertson EJ. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 1989;105:733–737.

DOI

8
Bedzhov I, Leung CY, Bialecka M et al. In vitro culture of mouse blastocysts beyond the implantation stages. Nat Protoc 2014;9:2732–2739.

DOI

9
ten Berge D, Koole W, Fuerer C et al. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 2008;3:508–518.

DOI

10
Bessonnard S, De Mot L, Gonze D et al. Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development 2014;141:3637–3648.

DOI

11
Brind’Amour J, Liu S, Hudson M et al. An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat Commun 2015;6:6033.

DOI

12
van den Brink SC, Alemany A, van Batenburg V et al. Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nature 2020;582:405–409.

DOI

13
van den Brink SC, Baillie-Johnson P, Balayo T et al. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 2014;141:4231–4242.

DOI

14
Brons, IG, Smithers, LE, Trotter, MW et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448, 191–195.

DOI

15
Cai KQ, Capo-Chichi CD, Rula ME et al. Dynamic GATA6 expression in primitive endoderm formation and maturation in early mouse embryogenesis. Dev Dyn 2008;237:2820–2829.

DOI

16
Cho LT, Wamaitha SE, Tsai IJ et al. Conversion from mouse embryonic to extra-embryonic endoderm stem cells reveals distinct differentiation capacities of pluripotent stem cell states. Development 2012;139:2866–2877.

DOI

17
Cockburn K, Rossant J. Making the blastocyst: lessons from the mouse. J Clin Invest 2010;120:995–1003.

DOI

18
Cong L, Ran FA, Cox D et al. Multiplex genome engineering using CRISPR/Cas systems. Science 2013;339:819–823.

DOI

19
Dobin A, Davis CA, Schlesinger F et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 2013;29:15–21.

DOI

20
Doetschman TC, Eistetter H, Katz M et al. The invitro development of blastocyst-derived embryonic stem-cell lines—formation of visceral yolk-sac, blood islands and myocardium. J Embryol Exp Morph 1985;87:27.

DOI

21
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981;292:154–156.

DOI

22
Fan Y, Min Z, Alsolami S et al. Generation of human blastocyst-like structures from pluripotent stem cells. Cell Discov 2021;7:81.

DOI

23
Fuchs C, Scheinast M, Pasteiner W et al. Self-organization phenomena in embryonic stem cell-derived embryoid bodies: axis formation and breaking of symmetry during cardiomyogenesis. Cells Tissues Organs 2012;195:377–391.

DOI

24
Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 2016;32:2847–2849.

DOI

25
Hao, Y, Hao, S, Andersen-Nissen, E et al. (2021). Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 e3529.

DOI

26
Harrison SE, Sozen B, Christodoulou N et al. Assembly of embryonic and extraembryonic stem cells to mimic embryogenesis in vitro. Science 2017;356.eaal1810.

DOI

27
Hayakawa K, Himeno E, Tanaka S et al. Isolation and manipulation of mouse trophoblast stem cells. Curr Protoc Stem Cell Biol 2015;32:1E.4.1–1E.4.32.

DOI

28
Jaffe AE, Tao R, Norris AL et al. qSVA framework for RNA quality correction in differential expression analysis. Proc Natl Acad Sci USA 2017;114:7130–7135.

DOI

29
Kagawa H, Javali A, Khoei HH et al. Human blastoids model blastocyst development and implantation. Nature 2022;601: 600–605.

DOI

30
Kime C, Kiyonari H, Ohtsuka S et al. Induced 2C expression and implantation-competent blastocyst-like cysts from primed pluripotent stem cells. Stem Cell Rep 2019;13:485–498.

DOI

31
Kunath T, Arnaud D, Uy GD et al. Imprinted X-inactivation in extra-embryonic endoderm cell lines from mouse blastocysts. Development 2005;132:1649–1661.

DOI

32
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9:357–359.

DOI

33
Leung CY, Zhu M, Zernicka-Goetz M. Polarity in cell-fate acquisition in the early mouse embryo. Curr Top Dev Biol 2016;120:203–234.

DOI

34
Li, R, Zhong, C, Yu, Y et al. Generation of blastocyst-like structures from mouse embryonic and adult cell cultures. Cell 2019;179, 687–702.e18 e618.

DOI

35
Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 2014;30:923–930.

DOI

36
Liu X, Tan JP, Schroder J et al. Modelling human blastocysts by reprogramming fibroblasts into iBlastoids. Nature 2021;591:627–632.

DOI

37
Liu X, Wang C, Liu W et al. Distinct features of H3K4me3 and H3K27me3 chromatin domains in pre-implantation embryos. Nature 2016;537:558–562.

DOI

38
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 2014;15:550.

DOI

39
Ma H, Zhai J, Wan H et al. In vitro culture of cynomolgus monkey embryos beyond early gastrulation. Science 2019;366.

DOI

40
Macfarlan TS, Gifford WD, Driscoll S et al. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 2012;487:57–63.

DOI

41
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981;78:7634–7638.

DOI

42
Mohammed H, Hernando-Herraez I, Savino A et al. Single-cell land-scape of transcriptional heterogeneity and cell fate decisions during mouse early gastrulation. Cell Rep 2017;20:1215–1228.

DOI

43
Morgani SM, Canham MA, Nichols J et al. Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep 2013;3:1945–1957.

DOI

44
Moris N, Anlas K, van den Brink SC et al. An in vitro model of early anteroposterior organization during human development. Nature 2020;582:410–415.

DOI

45
Niakan KK, Schrode N, Cho LT et al. Derivation of extraembryonic endoderm stem (XEN) cells from mouse embryos and embryonic stem cells. Nat Protoc 2013;8:1028–1041.

DOI

46
Nichols J, Silva J, Roode M et al. Suppression of Erk signalling promotes ground state pluripotency in the mouse embryo. Development 2009;136:3215–3222.

DOI

47
Papaioannou VE, Mkandawire J, Biggers JD. Development and phenotypic variability of genetically identical half mouse embryos. Development 1989;106:817–827.

DOI

48
Picelli S, Faridani OR, Bjorklund AK et al. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 2014;9:171–181.

DOI

49
Poh YC, Chen J, Hong Y et al. Generation of organized germ layers from a single mouse embryonic stem cell. Nat Commun 2014;5:4000.

DOI

50
Posfai E, Schell JP, Janiszewski A et al. Evaluating totipotency using criteria of increasing stringency. Nat Cell Biol 2021;23:49–60.

DOI

51
Ramirez F, Ryan DP, Gruning B et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 2016;44:W160–165.

DOI

52
Rivron NC, Frias-Aldeguer J, Vrij EJ et al. Blastocyst-like structures generated solely from stem cells. Nature 2018;557:106–111.

DOI

53
Rossant J. Postimplantation development of blastomeres isolated from 4- and 8-cell mouse eggs. J Embryol Exp Morphol 1976;36:283–290.

DOI

54
Rossant J, Tam PP. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 2009;136:701–713.

DOI

55
Rossant J, Tam PPL. New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell 2017;20:18–28.

DOI

56
Rossant J, Tam PPL. Opportunities and challenges with stem cell-based embryo models. Stem Cell Rep 2021;16:1031–1038.

DOI

57
Schrode N, Saiz N, Di Talia S et al. GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev Cell 2014;29:454–467.

DOI

58
Shen H, Yang M, Li SY et al. Mouse totipotent stem cells captured and maintained through spliceosomal repression. Cell 2021;184:2843.

DOI

59
Sozen B, Amadei G, Cox A et al. Self-assembly of embryonic and two extra-embryonic stem cell types into gastrulating embryo-like structures. Nat Cell Biol 2018;20:979–989.

DOI

60
Sozen, B, Cox, AL, De Jonghe, J et al. Self-organization of mouse stem cells into an extended potential blastoid. Dev Cell 2019;51:698–712.

DOI

61
Sozen B, Jorgensen V, Weatherbee BAT et al. Reconstructing aspects of human embryogenesis with pluripotent stem cells. Nat Commun 2021;12:5550.

DOI

62
Szabo PE, Hubner K, Scholer H et al. Allele-specific expression of imprinted genes in mouse migratory primordial germ cells. Mech Dev 2002;115:157–160.

DOI

63
Tanaka S, Kunath T, Hadjantonakis AK et al. Promotion of trophoblast stem cell proliferation by FGF4. Science 1998;282:2072–2075.

DOI

64
Tarkowski AK. Experiments on the development of isolated blastomers of mouse eggs. Nature 1959;184:1286–1287.

DOI

65
Tarkowski AK, Wroblewska J. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J Embryol Exp Morphol 1967;18:155–180.

DOI

66
Trapnell C, Williams BA, Pertea G et al. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 2010;28:511–515.

DOI

67
Turner DA, Girgin M, Alonso-Crisostomo L et al. Anteroposterior polarity and elongation in the absence of extra-embryonic tissues and of spatially localised signalling in gastruloids: mammalian embryonic organoids. Development 2017;144:3894–3906.

DOI

68
Veenvliet JV, Bolondi A, Kretzmer H et al. Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science 2020;370:eaba4937.

DOI

69
Vrij EJ, Scholte op Reimer YS, Frias Aldeguer J et al. Chemically-defined induction of a primitive endoderm and epiblast-like niche supports post-implantation progression from blastoids. bioRxiv 2019.

DOI

70
Xie W, Schultz MD, Lister R et al. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 2013;153:1134–1148.

DOI

71
Xu Y, Zhao J, Ren Y et al. Derivation of totipotent-like stem cells with blastocyst-like structure forming potential. Cell Res 2022.

DOI

72
Yamanaka Y, Lanner F, Rossant J. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 2010;137:715–724.

DOI

73
Yanagida, A, Spindlow, D, Nichols, J et al. Naive stem cell blastocyst model captures human embryo lineage segregation. Cell Stem Cell 2021;28:1016–1022.

DOI

74
Yang J, Ryan DJ, Wang W et al. Establishment of mouse expanded potential stem cells. Nature 2017a;550:393–397.

DOI

75
Yang M, Yu H, Yu X et al. Chemical-induced chromatin remodeling reprograms mouse ESCs to totipotent-like stem cells. Cell Stem Cell 2022;29:400–418.

DOI

76
Yang, Y, Liu, B, Xu, J et al. Derivation of pluripotent stem cells with in vivo embryonic and extraembryonic potency. Cell 2017b;169:243–257.

DOI

77
Ying QL, Wray J, Nichols J et al. The ground state of embryonic stem cell self-renewal. Nature 2008;453:519–523.

DOI

78
Yu G, Wang LG, Han Y et al. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 2012;16:284–287.

DOI

79
Yu L, Wei Y, Duan J et al. Blastocyst-like structures generated from human pluripotent stem cells. Nature 2021;591:620–626.

DOI

80
Zhang SP, Chen TZ, Chen NX et al. Implantation initiation of self-assembled embryolike structures generated using three types of mouse blastocyst-derived stem cells. Nat Commun 2019;10:496.

DOI

81
Zhao C, Reyes AP, Schell JP et al. Reprogrammed iBlastoids contain amnion-like cells but not trophectoderm. biorxiv 2021.

DOI

82
Zhong Y, Binas B. Transcriptome analysis shows ambiguous phenotypes of murine primitive endoderm-related stem cell lines. Genes Cells 2019;24:324–331.

DOI

83
Zhong Y, Choi T, Kim M et al. Isolation of primitive mouse extraembryonic endoderm (pXEN) stem cell lines. Stem Cell Res 2018;30:100–112.

DOI

Outlines

/