RESEARCH ARTICLE

Unveiling E2F4, TEAD1 and AP-1 as regulatory transcription factors of the replicative senescence program by multi-omics analysis

  • Yuting Wang 1 ,
  • Liping Liu 1 ,
  • Yifan Song 2 ,
  • Xiaojie Yu 2 ,
  • Hongkui Deng , 1,2,3
Expand
  • 1. School of Basic Medical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
  • 2. The MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
  • 3. State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen 518055, China

Received date: 21 Jun 2021

Accepted date: 26 Nov 2021

Published date: 15 Oct 2022

Copyright

2022 The Author(s)

Abstract

Senescence, a stable state of growth arrest, affects many physiological and pathophysiological processes, especially aging. Previous work has indicated that transcription factors (TFs) play a role in regulating senescence. However, a systematic study of regulatory TFs during replicative senescence (RS) using multi-omics analysis is still lacking. Here, we generated time-resolved RNA-seq, reduced representation bisulfite sequencing (RRBS) and ATAC-seq datasets during RS of mouse skin fibroblasts, which demonstrated that an enhanced inflammatory response and reduced proliferative capacity were the main characteristics of RS in both the transcriptome and epigenome. Through integrative analysis and genetic manipulations, we found that transcription factors E2F4, TEAD1 and AP-1 are key regulators of RS. Overexpression of E2f4 improved cellular proliferative capacity, attenuated SA-β-Gal activity and changed RS-associated differentially methylated sites (DMSs). Moreover, knockdown of Tead1 attenuated SA-β-Gal activity and partially altered the RS-associated transcriptome. In addition, knock-down of Atf3, one member of AP-1 superfamily TFs, reduced Cdkn2a (p16) expression in pre-senescent fibroblasts. Taken together, the results of this study identified transcription factors regulating the senescence program through multi-omics analysis, providing potential therapeutic targets for anti-aging.

Cite this article

Yuting Wang , Liping Liu , Yifan Song , Xiaojie Yu , Hongkui Deng . Unveiling E2F4, TEAD1 and AP-1 as regulatory transcription factors of the replicative senescence program by multi-omics analysis[J]. Protein & Cell, 2022 , 13(10) : 742 -759 . DOI: 10.1007/s13238-021-00894-z

1
Avelar RA, Ortega JG, Tacutu R, Tyler EJ, Bennett D, Binetti P, Budovsky A, Chatsirisupachai K, Johnson E, Murray A et al (2020) A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol 21: 91

DOI

2
Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A et al (2016) Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530: 184- 189

DOI

3
Berest I, Arnold C, Reyes-Palomares A, Palla G, Rasmussen KD, Giles H, Bruch PM, Huber W, Dietrich S, Helin K et al (2020) Quantification of differential transcription factor activity and multiomics-based classification into activators and repressors:diffTF. Cell Rep 29: 3147- 3159.e3112

DOI

4
Buenrostro JD, Wu B, Chang HY, Greenleaf WJ (2015) ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol 109: 21.29.21- 21.29.29

DOI

5
Cai Y, Zhou H, Zhu Y, Sun Q, Ji Y, Xue A, Wang Y, Chen W, Yu X, Wang L et al (2020) Elimination of senescent cells by β-galactosidase-targeted prodrug attenuates inflammation and restores physical function in aged mice. Cell Res 30: 574- 589

DOI

6
Chan M, Yuan H, Soifer I, Maile TM, Wang RY, Ireland A, O’Brien J, Chan L, Vijay T et al (2021) Revisiting the hayflick limit: insights from an integrated analysis of changing transcripts, proteins, metabolites and chromatin. bioRxiv. https://doi.org/10.1101/2021.05.03.442497v1.abstract

7
Collin G, Huna A, Warnier M, Flaman JM, Bernard D (2018) Transcriptional repression of DNA repair genes is a hallmark and a cause of cellular senescence. Cell Death Dis 9: 259

DOI

8
Colombo AR, Elias HK, Ramsingh G (2018) Senescence induction universally activates transposable element expression. Cell Cycle 17: 1846- 1857

DOI

9
Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY, Campisi J (2008) Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6: 2853- 2868

10
Corces MR, Trevino AE, Hamilton EG, Greenside PG, Sinnott-Armstrong NA, Vesuna S, Satpathy AT, Rubin AJ, Montine KS, Wu B et al (2017) An improved ATAC-seq protocol reduces background and enables interrogation of frozen tissues. Nat Methods 14: 959- 962

DOI

11
De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A, Brocculi G, Adney EM, Boeke JD et al (2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566: 73- 78

DOI

12
Eren M, Boe AE, Klyachko EA, Vaughan DE (2014) Role of plasminogen activator inhibitor-1 in senescence and aging. Semin Thromb Hemost 40: 645- 651

DOI

13
Feng H, Conneely KN, Wu H (2014) A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data. Nucleic Acids Res 42: e69

DOI

14
Garneau H, Paquin MC, Carrier JC, Rivard N (2009) E2F4 expression is required for cell cycle progression of normal intestinal crypt cells and colorectal cancer cells. J Cell Physiol 221: 350- 358

DOI

15
Guan Y, Zhang C, Lyu G, Huang X, Zhang X, Zhuang T, Jia L, Zhang L, Zhang C, Li C et al (2020) Senescence-activated enhancer landscape orchestrates the senescence-associated secretory phenotype in murine fibroblasts. Nucleic Acids Res 48: 10909- 10923

DOI

16
Hänzelmann S, Beier F, Gusmao EG, Koch CM, Hummel S, Charapitsa I, Joussen S, Benes V, Brümmendorf TH, Reid G et al (2015) Replicative senescence is associated with nuclear reorganization and with DNA methylation at specific transcription factor binding sites. Clin Epigenet 7: 19

DOI

17
Hernandez-Segura A, Nehme J, Demaria M (2018) Hallmarks of cellular senescence. Trends Cell Biol 28: 436- 453

DOI

18
Hernando-Herraez I, Evano B, Stubbs T, Commere PH, Jan Bonder M, Clark S, Andrews S, Tajbakhsh S, Reik W (2019) Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat Commun 10: 4361

DOI

19
Hsu J, Sage J (2016) Novel functions for the transcription factor E2F4 in development and disease. Cell Cycle 15: 3183- 3190

DOI

20
Hsu J, Arand J, Chaikovsky A, Mooney NA, Demeter J, Brison CM, Oliverio R, Vogel H, Rubin SM, Jackson PK et al (2019) E2F4 regulates transcriptional activation in mouse embryonic stem cells independently of the RB family. Nat Commun 10: 2939

DOI

21
Humbert PO, Rogers C, Ganiatsas S, Landsberg RL, Trimarchi JM, Dandapani S, Brugnara C, Erdman S, Schrenzel M, Bronson RT et al (2000) E2F4 is essential for normal erythrocyte maturation and neonatal viability. Mol Cell 6: 281- 291

DOI

22
Iwafuchi-Doi M, Zaret KS (2014) Pioneer transcription factors in cell reprogramming. Genes Dev 28: 2679- 2692

DOI

23
Ji Z, He L, Regev A, Struhl K (2019) Inflammatory regulatory network mediated by the joint action of NF-kB, STAT3, and AP-1 factors is involved in many human cancers. Proc Natl Acad Sci USA 116: 9453- 9462

DOI

24
Joung J, Konermann S, Gootenberg JS, Abudayyeh OO, Platt RJ, Brigham MD, Sanjana NE, Zhang F (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12: 828- 863

DOI

25
Kurppa KJ, Liu Y, To C, Zhang T, Fan M, Vajdi A, Knelson EH, Xie Y, Lim K, Cejas P et al (2020) Treatment-induced tumor dormancy through YAP-mediated transcriptional reprogramming of the apoptotic pathway. Cancer Cell 37: 104- 122

DOI

26
Li Z, Schulz MH, Look T, Begemann M, Zenke M, Costa IG (2019) Identification of transcription factor binding sites using ATACseq. Genome Biol 20: 45

DOI

27
Maehara K, Yamakoshi K, Ohtani N, Kubo Y, Takahashi A, Arase S, Jones N, Hara E (2005) Reduction of total E2F/DP activity induces senescence-like cell cycle arrest in cancer cells lacking functional pRB and p53. J Cell Biol 168: 553- 560

DOI

28
Marquard S, Thomann S, Weiler SME, Bissinger M, Lutz T, Sticht C, Tóth M, de la Torre C, Gretz N, Straub BK et al (2020) Yesassociated protein (YAP) induces a secretome phenotype and transcriptionally regulates plasminogen activator Inhibitor-1 (PAI-1) expression in hepatocarcinogenesis. Cell Commun Signal 18: 166

DOI

29
Marti P, Stein C, Blumer T, Abraham Y, Dill MT, Pikiolek M, Orsini V, Jurisic G, Megel P, Makowska Z et al (2015) YAP promotes proliferation, chemoresistance, and angiogenesis in human cholangiocarcinoma through TEAD transcription factors. Hepatology 62: 1497- 1510

DOI

30
Martínez-Zamudio RI, Roux PF, de Freitas J, Robinson L, Doré G, Sun B, Belenki D, Milanovic M, Herbig U, Schmitt CA et al (2020) AP-1 imprints a reversible transcriptional programme of senescent cells. Nat Cell Biol 22: 842- 855

DOI

31
Minteer C, Morselli M, Meer M, Cao J, Lang S, Pellegrini M, Yan Q, Levine M (2020) A DNAmRep epigenetic fingerprint for determining cellular replication age. bioRxiv

32
Nelson DM, McBryan T, Jeyapalan JC, Sedivy JM, Adams PD (2014) A comparison of oncogene-induced senescence and replicative senescence: implications for tumor suppression and aging. Age 36: 9637

DOI

33
Potocki L, Kuna E, Filip K, Kasprzyk B, Lewinska A, Wnuk M (2019) Activation of transposable elements and genetic instability during long-term culture of the human fungal pathogen Candida albicans. Biogerontology 20: 457- 474

DOI

34
Purcell M, Kruger A, Tainsky MA (2014) Gene expression profiling of replicative and induced senescence. Cell Cycle 13: 3927- 3937

DOI

35
Qu K, Zaba LC, Satpathy AT, Giresi PG, Li R, Jin Y, Armstrong R, Jin C, Schmitt N, Rahbar Z et al (2017) Chromatin accessibility landscape of cutaneous T cell lymphoma and dynamic response to HDAC inhibitors. Cancer Cell 32: 27- 41

DOI

36
Sanokawa-Akakura R, Akakura S, Ostrakhovitch EA, Tabibzadeh S (2019) Replicative senescence is distinguishable from DNA damage-induced senescence by increased methylation of promoter of rDNA and reduced expression of rRNA. Mech Ageing Dev 183: 111149

DOI

37
Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4: E131- 136

DOI

38
Sherwood RI, Hashimoto T, O’Donnell CW, Lewis S, Barkal AA, van Hoff JP, Karun V, Jaakkola T, Gifford DK (2014) Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol 32: 171- 178

DOI

39
Spitz F, Furlong EE (2012) Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13: 613- 626

DOI

40
Uluçkan Ö, Guinea-Viniegra J, Jimenez M, Wagner EF (2015) Signalling in inflammatory skin disease by AP-1 (Fos/Jun). Clin Exp Rheumatol 33: S44- 49

41
van Deursen JM (2014) The role of senescent cells in ageing. Nature 509: 439- 446

DOI

42
Vaughan DE, Rai R, Khan SS, Eren M, Ghosh AK (2017) Plasminogen activator inhibitor-1 is a marker and a mediator of senescence. Arterioscler Thromb Vasc Biol 37: 1446- 1452

DOI

43
Wagner W, Bork S, Horn P, Krunic D, Walenda T, Diehlmann A, Benes V, Blake J, Huber FX, Eckstein V et al (2009) Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS ONE 4: e5846

DOI

44
Wagner W, Fernandez-Rebollo E, Frobel J (2016) DNA-methylation changes in replicative senescence and aging: two sides of the same coin? Epigenomics 8: 1- 3

DOI

45
Wang J, Zibetti C, Shang P, Sripathi SR, Zhang P, Cano M, Hoang T, Xia S, Ji H, Merbs SL et al (2018) ATAC-Seq analysis reveals a widespread decrease of chromatin accessibility in age-related macular degeneration. Nat Commun 9: 1364

DOI

46
Wong ES, Schmitt BM, Kazachenka A, Thybert D, Redmond A, Connor F, Rayner TF, Feig C, Ferguson-Smith AC, Marioni JC et al (2017) Interplay of cis and trans mechanisms driving transcription factor binding and gene expression evolution. Nat Commun 8: 1092

DOI

47
Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, Fraser DG et al (2018) Senolytics improve physical function and increase lifespan in old age. Nat Med 24: 1246- 1256

DOI

48
Yu FX, Zhao B, Guan KL (2015) Hippo pathway in organ size control, tissue homeostasis, and cancer. Cell 163: 811- 828

DOI

49
Zhang C, Zhang X, Huang L, Huang X, Tian XL, Zhang L, Tao W (2021) ATF3 drives senescence by reconstructing accessible chromatin profiles. Aging Cell 20: e13315

DOI

Outlines

/