[1] Anfinsen, C.B., Haber, E., Sela, M., and White, F.H. Jr. (1961). The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain. Proc Natl Acad Sci U S A 47, 1309-1314 13683522.
[2] Buskiewicz, I., Deuerling, E., Gu, S.Q., J?ckel, J., Rodnina, M.V., Bukau, B., and Wintermeyer, W. (2004). Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. Proc Natl Acad Sci U S A 101, 7902-7906 15148364.
[3] Caldas, T., Laalami, S., and Richarme, G. (2000). Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem 275, 855-860 10625618.
[4] Caldas, T.D., El Yaagoubi, A., and Richarme, G. (1998). Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem 273, 11478-11482 9565560.
[5] Caldon, C.E., Yoong, P., and March, P.E. (2001). Evolution of a molecular switch: universal bacterial GTPases regulate ribosome function. Mol Microbiol 41, 289-297 11489118.
[6] Deuerling, E., Schulze-Specking, A., Tomoyasu, T., Mogk, A., and Bukau, B. (1999). Trigger factor and DnaK cooperate in folding of newly synthesized proteins. Nature 400, 693-696 10458167.
[7] Ellis, R.J. (1990). The molecular chaperone concept. Semin Cell Biol 1, 1-9 1983265.
[8] Ellis, R.J. (1993). The general concept of molecular chaperones. Philos Trans R Soc Lond B Biol Sci 339, 257-261 8098529.
[9] Ellis, R.J., and Hemmingsen, S.M. (1989). Molecular chaperones: proteins essential for the biogenesis of some macromolecular structures. Trends Biochem Sci 14, 339-342 2572080.
[10] Genevaux, P., Keppel, F., Schwager, F., Langendijk-Genevaux, P.S., Hartl, F.U., and Georgopoulos, C. (2004). In vivo analysis of the overlapping functions of DnaK and trigger factor. EMBO Rep 5, 195-200 14726952.
[11] Gu, S.Q., Peske, F., Wieden, H.J., Rodnina, M.V., and Wintermeyer, W. (2003). The signal recognition particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome. RNA 9, 566-573 12702815.
[12] Hartl, F.U., and Hayer-Hartl, M. (2009). Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16, 574-581 19491934.
[13] Hendrick, J.P., and Hartl, F.U. (1993). Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem 62, 349-384 8102520.
[14] Jakob, U., Gaestel, M., Engel, K., Buchner, J. (1993). Small heat shock proteins are molecular chaperones. J Biol Chem 268, 1517-1520 .
[15] Kramer, G., Boehringer, D., Ban, N., and Bukau, B. (2009). The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins. Nat Struct Mol Biol 16, 589-597 19491936.
[16] Kudlicki, W., Coffman, A., Kramer, G., and Hardesty, B. (1997). Renaturation of rhodanese by translational elongation factor (EF) Tu. Protein refolding by EF-Tu flexing. J Biol Chem 272, 32206-32210 9405422.
[17] Leipe, D.D., Wolf, Y.I., Koonin, E.V., and Aravind, L. (2002). Classification and evolution of P-loop GTPases and related ATPases. J Mol Biol 317, 41-72 11916378.
[18] Maier, R., Scholz, C., and Schmid, F.X. (2001). Dynamic association of trigger factor with protein substrates. J Mol Biol 314, 1181-1190 11743733.
[19] Márquez, V., Wilson, D.N., Tate, W.P., Triana-Alonso, F., and Nierhaus, K.H. (2004). Maintaining the ribosomal reading frame: the influence of the E site during translational regulation of release factor 2. Cell 118, 45-55 15242643.
[20] Nissen, P., Hansen, J., Ban, N., Moore, P.B., and Steitz, T.A. (2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920-930 10937990.
[21] Sato, A., Kobayashi, G., Hayashi, H., Yoshida, H., Wada, A., Maeda, M., Hiraga, S., Takeyasu, K., and Wada, C. (2005). The GTP binding protein Obg homolog ObgE is involved in ribosome maturation. Genes Cells 10, 393-408 15836769.
[22] Sayed, A., Matsuyama, S., and Inouye, M. (1999). Era, an essential Escherichia coli small G-protein, binds to the 30S ribosomal subunit. Biochem Biophys Res Commun 264, 51-54 10527840.
[23] Suzuki, H., Ueda, T., Taguchi, H., and Takeuchi, N. (2007). Chaperone properties of mammalian mitochondrial translation elongation factor Tu. J Biol Chem 282, 4076-4084 17130126.
[24] Teter, S.A., Houry, W.A., Ang, D., Tradler, T., Rockabrand, D., Fischer, G., Blum, P., Georgopoulos, C., and Hartl, F.U. (1999). Polypeptide flux through bacterial Hsp70: DnaK cooperates with trigger factor in chaperoning nascent chains. Cell 97, 755-765 10380927.
[25] Wang, C.C. (2004). Protein folding and molecular chaperones. Bull Biol 39, 1-6 . (In Chinese)