RESEARCH ARTICLE

Single-nucleus transcriptomic landscape of primate hippocampal aging

  • Hui Zhang 1,6 ,
  • Jiaming Li 4,6,7,10,11 ,
  • Jie Ren 4,5,6,7,10 ,
  • Shuhui Sun 1,5,13 ,
  • Shuai Ma 1,5,13 ,
  • Weiqi Zhang 4,5,6,7,10 ,
  • Yang Yu 12,14 ,
  • Yusheng Cai 1,5,13 ,
  • Kaowen Yan 1,5,13 ,
  • Wei Li 2,5,6,13 ,
  • Baoyang Hu 2,5,6,13 ,
  • Piu Chan 3 ,
  • Guo-Guang Zhao 3,9 ,
  • Juan Carlos Izpisua Belmonte 15 ,
  • Qi Zhou 2,5,6,13 ,
  • Jing Qu , 2,5,6,13 ,
  • Si Wang , 3,8 ,
  • Guang-Hui Liu , 1,3,5,6,13
Expand
  • 1. State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 2. State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
  • 3. Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
  • 4. CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
  • 5. Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
  • 6. University of Chinese Academy of Sciences, Beijing 100049, China
  • 7. China National Center for Bioinformation, Beijing 100101, China
  • 8. Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
  • 9. Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China
  • 10. Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
  • 11. Sino-Danish Center for Education and Research, Beijing 101408, China
  • 12. Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing 100191, China
  • 13. Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
  • 14. Stem Cell Research Center, Peking University Third Hospital, Beijing 100191, China
  • 15. Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA

Received date: 11 Apr 2021

Accepted date: 24 Apr 2021

Published date: 15 Sep 2021

Copyright

2021 The Author(s)

Abstract

The hippocampus plays a crucial role in learning and memory, and its progressive deteriorationwith age is functionally linked to a variety ofhuman neurodegenerative diseases.Yet a systematic profiling of the aging effects on various hippocampal cell types in primates is still missing. Here, we reported a variety of new aging-associated phenotypic changes of the primate hippocampus. These include, in particular, increased DNA damage and heterochromatin erosion with time, alongside loss of proteostasis and elevated inflammation. To understand their cellular and molecular causes, we established the first single-nucleus transcriptomic atlas of primate hippocampal aging. Among the 12 identified cell types, neural transiently amplifying progenitor cell (TAPC) and microglia were most affected by aging. In-depth dissection of gene-expression dynamics revealed impaired TAPC division and compromised neuronal unction along the neurogenesis trajectory; additionally elevated pro-inflammatory responses in the agedmicroglia and oligodendrocyte, as well as dysregulated coagulation pathways in the aged endothelial cells may contribute to a hostile microenvironment for neurogenesis. This rich resource for understanding primate hippocampal aging may provide potential diagnostic biomarkers and therapeutic interventions against age-related neurodegenerative diseases.

Cite this article

Hui Zhang , Jiaming Li , Jie Ren , Shuhui Sun , Shuai Ma , Weiqi Zhang , Yang Yu , Yusheng Cai , Kaowen Yan , Wei Li , Baoyang Hu , Piu Chan , Guo-Guang Zhao , Juan Carlos Izpisua Belmonte , Qi Zhou , Jing Qu , Si Wang , Guang-Hui Liu . Single-nucleus transcriptomic landscape of primate hippocampal aging[J]. Protein & Cell, 2021 , 12(9) : 695 -716 . DOI: 10.1007/s13238-021-00852-9

1
Aging Atlas C (2021) Aging Atlas: a multi-omics database for aging biology. Nucleic Acids Res 49:D825–D830

DOI

2
Aibar S, González-Blas CB, Moerman T, Huynh-Thu VA, Imrichova H, Hulselmans G, Rambow F, Marine J-C, Geurts P, Aerts J (2017) SCENIC: single-cell regulatory network inference and clustering. Nat Methods 14:1083–1086

DOI

3
Aimone JB, Li Y, Lee SW, Clemenson GD, Deng W, Gage FH (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94:991–1026

DOI

4
Angelidis I, Simon LM, Fernandez IE, Strunz M, Mayr CH, Greiffo FR, Tsitsiridis G, Ansari M, Graf E, Strom TM (2019) An atlas of the aging lung mapped by single cell transcriptomics and deep tissue proteomics. Nat Commun 10:963

DOI

5
Artegiani B, Lyubimova A, Muraro M, van Es JH, van Oudenaarden A, Clevers H (2017) A single-cell RNA sequencing study reveals cellular and molecular dynamics of the hippocampal neurogenic niche. Cell Rep 21:3271–3284

DOI

6
Baird GS, Nelson SK, Keeney TR, Stewart A, Williams S, Kraemer S, Peskind ER, Montine TJ (2012) Age-dependent changes in the cerebrospinal fluid proteome by slow off-rate modified aptamer array. Am J Pathol 180:446–456

DOI

7
Baker DJ, Petersen RC (2018) Cellular senescence in brain aging and neurodegenerative diseases: evidence and perspectives. J Clin Investig 128:1208–1216

DOI

8
Bedrosian TA, Houtman J, Eguiguren JS, Ghassemzadeh S, Rund N, Novaresi NM, Hu L, Parylak SL, Denli AM, Randolph-Moore L(2021) Lamin B1 decline underlies age-related loss of adult hippocampal neurogenesis. EMBO J 40:e105819

DOI

9
Bengoa-Vergniory N, Kypta RM (2015) Canonical and noncanonical Wnt signaling in neural stem/progenitor cells. Cell Mol Life Sci 72:4157–4172

DOI

10
Bi S, Liu Z, Wu Z, Wang Z, Liu X, Wang S, Ren J, Yao Y, Zhang W, Song M (2020) SIRT7 antagonizes human stem cell aging as a heterochromatin stabilizer. Protein Cell 11:483–504

DOI

11
Bin Imtiaz MK, Jaeger BN, Bottes S, Machado RAC, Vidmar M, Moore DL, Jessberger S (2021) Declining lamin B1 expression mediates age-dependent decreases of hippocampal stem cell activity. Cell Stem Cell.https://doi.org/10.1016/j.stem.2021.01. 015

DOI

12
Boldrini M, Fulmore CA, Tartt AN, Simeon LR, Pavlova I, Poposka V, Rosoklija GB, Stankov A, Arango V, Dwork AJ (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22(589–599):e585

DOI

13
Brunk UT, Terman A (2002) The mitochondrial-lysosomal axis theory of aging. Eur J Biochem 269:1996–2002

DOI

14
Bryan KJ, Zhu X, Harris PL, Perry G, Castellani RJ, Smith MA, Casadesus G (2008) Expression of CD74 is increased in neurofibrillary tangles in Alzheimer’s disease. Mol Neurodegener 3:13

DOI

15
Buchwalter A, Kaneshiro JM, Hetzer MW (2019) Coaching from the sidelines: the nuclear periphery in genome regulation. Nat Rev Genet 20:39–50

DOI

16
Buckig A, Tikkanen R, Herzog V, Schmitz A (2002) Cytosolic and nuclear aggregation of the amyloid beta-peptide following its expression in the endoplasmic reticulum. Histochem Cell Biol 118:353–360

DOI

17
Butler A, Hoffman P, Smibert P, Papalexi E, Satija R (2018) Integrating single-cell transcriptomic data across different conditions, technologies, and species. Nat Biotechnol 36:411–420

DOI

18
Chen Y, Niu Y, Ji W(2012) Transgenic nonhuman primate models for human diseases: approaches and contributing factors. J Genet Genom 39:247–251

DOI

19
Chen Y, Niu Y, Ji W (2016) Genome editing in nonhuman primates: approach to generating human disease models. J Intern Med 280:246–251

DOI

20
Chen Y, Yu J, Niu Y, Qin D, Liu H, Li G, Hu Y, Wang J, Lu Y, Kang Y (2017) Modeling Rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell 169(945–955):

DOI

21
Chen WT, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, Corthout N, Qian X, Lalakova J, Kuhnemund M, Voytyuk I (2020) Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182(976–991):e919

DOI

22
Chow HM, Shi M, Cheng A, Gao Y, Chen G, Song X, So RWL, Zhang J, Herrup K (2019) Age-related hyperinsulinemia leads to insulin resistance in neurons and cell-cycle-induced senescence. Nat Neurosci 22:1806–1819

DOI

23
Colman RJ (2018) Non-human primates as a model for aging. Biochim Biophys Acta Mol Basis Dis 1864:2733–2741

DOI

24
Costa-Mattioli M, Walter P (2020) The integrated stress response: from mechanism to disease. Science 368:eaat5314

DOI

25
De Cecco M, Ito T, Petrashen AP, Elias AE, Skvir NJ, Criscione SW, Caligiana A, Brocculi G, Adney EM, Boeke JD(2019) L1 drives IFN in senescent cells and promotes age-associated inflammation. Nature 566:73–78

DOI

26
Debacq-Chainiaux F, Erusalimsky JD, Campisi J, Toussaint O (2009) Protocols to detect senescence-associated beta-galactosidase (SA-βgal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 4:1798–1806

DOI

27
Deng L, Ren R, Liu Z, Song M, Li J, Wu Z, Ren X, Fu L, Li W, Zhang W(2019) Stabilizing heterochromatin by DGCR8 alleviates senescence and osteoarthritis. Nat Commun 10:3329

DOI

28
Diao Z, Ji Q, Wu Z, Zhang W, Cai Y, Wang Z, Hu J, Liu Z, Wang Q, Bi S (2021) SIRT3 consolidates heterochromatin and counteracts senescence. Nucleic Acids Res 49:4203–4219

DOI

29
Dou Z, Xu C, Donahue G, Shimi T, Pan JA, Zhu J, Ivanov A, Capell BC, Drake AM, Shah PP (2015) Autophagy mediates degradation of nuclear lamina. Nature 527:105–109

DOI

30
Dulken BW, Buckley MT, Navarro Negredo P, Saligrama N, Cayrol R, Leeman DS, George BM, Boutet SC, Hebestreit K, Pluvinage JV (2019) Single-cell analysis reveals T cell infiltration in old neurogenic niches. Nature 571:205–210

DOI

31
Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R (2020) Cell PhoneDB: inferring cell–cell communication from combined expression of multi-subunit ligand–receptor complexes. Nat Protoc 15:1484–1506

DOI

32
Encinas JM, Michurina TV, Peunova N, Park JH, Tordo J, Peterson DA, Fishell G, Koulakov A, Enikolopov G (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8:566–579

DOI

33
Fan X, Wheatley EG, Villeda SA (2017) Mechanisms of hippocampal aging and the potential for rejuvenation. Annu Rev Neurosci 40:251–272

DOI

34
Frost B (2016) Alzheimer’s disease: an acquired neurodegenerative laminopathy. Nucleus 7:275–283

DOI

35
Geng L, Liu Z, Wang S, Sun S, Ma S, Liu X, Chan P, Sun L, Song M, Zhang W (2019) Low-dose quercetin positively regulates mouse healthspan. Protein Cell 10:770–775

DOI

36
Geutskens SB, Hordijk PL, van Hennik PB (2010) The chemorepellent Slit3 promotes monocyte migration. J Immunol 185:7691–7698

DOI

37
Giacobini E, Gold G (2013) Alzheimer disease therapy–moving from amyloid-beta to tau. Nat Rev Neurol 9:677–686

DOI

38
Gu SX, Tyagi T, Jain K, Gu VW, Lee SH, Hwa JM, Kwan JM, Krause DS, Lee AI, Halene S(2021) Thrombocytopathy and endotheliopathy: crucial contributors to COVID-19 thromboinflammation. Nat Rev Cardiol 18:194–209

DOI

39
Gust J, Hay KA, Hanafi LA, Li D, Myerson D, Gonzalez-Cuyar LF, Yeung C, Liles WC, Wurfel M, Lopez JA (2017) Endothelial activation and blood-brain barrier disruption in neurotoxicity after adoptive immunotherapy with CD19 CAR-T cells. Cancer Discov 7:1404–1419

DOI

40
Habib N, Li Y, Heidenreich M, Swiech L, Avraham-Davidi I, Trombetta JJ, Hession C, Zhang F, Regev A (2016) Div-Seq: single-nucleus RNA-Seq reveals dynamics of rare adult newborn neurons. Science 353:925–928

DOI

41
Harris L, Genovesi LA, Gronostajski RM, Wainwright BJ, Piper M (2015) Nuclear factor one transcription factors: divergent functions in developmental versus adult stem cell populations. Dev Dyn 244:227–238

DOI

42
He G, Luo W, Li P, Remmers C, Netzer WJ, Hendrick J, Bettayeb K, Flajolet M, Gorelick F, Wennogle LP (2010) Gammasecretase activating protein is a therapeutic target for Alzheimer’s disease. Nature 467:95–98

DOI

43
He X, Memczak S, Qu J, Belmonte JCI, Liu GH (2020) Single-cell omics in ageing: a young and growing field. Nat Metab 2:293–302

DOI

44
Head D, Snyder AZ, Girton LE, Morris JC, Buckner RL (2005) Frontal-hippocampal double dissociation between normal aging and Alzheimer’s disease. Cereb Cortex 15:732–739

DOI

45
Herculano-Houzel S (2009) The human brain in numbers: a linearly scaled-up primate brain. Front Hum Neurosci 3:31

DOI

46
Hoppe B, Dorner T (2012) Coagulation and the fibrin network in rheumatic disease: a role beyond haemostasis. Nat Rev Rheumatol 8:738–746

DOI

47
Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, Bohr VA (2019) Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol 15:565–581

DOI

48
Hu H, Ji Q, Song M, Ren J, Liu Z, Wang Z, Liu X, Yan K, Hu J, Jing Y (2020) ZKSCAN3 counteracts cellular senescence by stabilizing heterochromatin. Nucleic Acids Res 48:6001–6018

DOI

49
Hwang IK, Park JH, Lee TK, Kim DW, Yoo KY, Ahn JH, Kim YH, Cho JH, Kim YM, Won MH (2017) CD74-immunoreactive activated M1 microglia are shown late in the gerbil hippocampal CA1 region following transient cerebral ischemia. Mol Med Rep 15:4148–4154

DOI

50
Ibrayeva A, Bay M, Pu E, Jorg DJ, Peng L, Jun H, Zhang N, Aaron D, Lin C, Resler G (2021) Early stem cell aging in the mature brain. Cell Stem Cell. https://doi.org/10.1016/j.stem.2021.03.018

DOI

51
Jin WN, Shi K, He W, Sun JH, Van Kaer L, Shi FD, Liu Q (2021) Neuroblast senescence in the aged brain augments natural killer cell cytotoxicity leading to impaired neurogenesis and cognition. Nat Neurosci 24:61–73

DOI

52
Kempermann G, Song H, Gage FH (2015) Neurogenesis in the Adult Hippocampus. Cold Spring Harb Perspect Biol 7:a018812

DOI

53
Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276–1290

DOI

54
Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, Linker SB, Pham S, Erwin JA, Miller JA (2016) Using single nuclei for RNA-seq to capture the transcriptome of postmortem neurons. Nat Protoc 11:499–524

DOI

55
Kruithof EK, Dunoyer-Geindre S (2014) Human tissue-type plasminogen activator. Thromb Haemost 112:243–254

DOI

56
Kuhn HG, Toda T, Gage FH (2018) Adult hippocampal neurogenesis: a coming-of-age story. J Neurosci 38:10401–10410

DOI

57
Leng F, Edison P (2021) Neuroinflammation and microglial activation in Alzheimer disease: where do we go from here? Nat Rev Neurol 17:157–172

DOI

58
Leuner B, Kozorovitskiy Y, Gross CG, Gould E (2007) Diminished adult neurogenesis in the marmoset brain precedes old age. Proc Natl Acad Sci USA 104:17169–17173

DOI

59
Leyns CEG, Ulrich JD, Finn MB, Stewart FR, Koscal LJ, Remolina Serrano J, Robinson GO, Anderson E, Colonna M, Holtzman DM (2017) TREM2 deficiency attenuates neuroinflammation and protects against neurodegeneration in a mouse model of tauopathy. Proc Natl Acad Sci USA 114:11524–11529

DOI

60
Li R, Lindholm K, Yang LB, Yue X, Citron M, Yan R, Beach T, Sue L, Sabbagh M, Cai H(2004) Amyloid beta peptide load is correlated with increased beta-secretase activity in sporadic Alzheimer’s disease patients. Proc Natl Acad Sci USA 101:3632–3637

DOI

61
Li D, Takeda N, Jain R, Manderfield LJ, Liu F, Li L, Anderson SA, Epstein JA (2015) Hopx distinguishes hippocampal from lateral ventricle neural stem cells. Stem Cell Res 15:522–529

DOI

62
Li J, Zheng Y, Yan P, Song M, Wang S, Sun L, Liu Z, Ma S, Belmonte JCI, Chan P(2020) A single-cell transcriptomic atlas of primate pancreatic islet aging. Natl Sci Rev 8(2):127

DOI

63
Liang C, Liu Z, Song M, Li W, Wu Z, Wang Z, Wang Q, Wang S, Yan K, Sun L(2021) Stabilization of heterochromatin by CLOCK promotes stem cell rejuvenation and cartilage regeneration. Cell Res 31:187–205

DOI

64
Linnartz-Gerlach B, Bodea LG, Klaus C, Ginolhac A, Halder R, Sinkkonen L, Walter J, Colonna M, Neumann H (2019) TREM2 triggers microglial density and age-related neuronal loss. Glia 67:539–550

DOI

65
Liu GH, Qu J, Suzuki K, Nivet E, Li M, Montserrat N, Yi F, Xu X, Ruiz S, Zhang W(2012) Progressive degeneration of human neural stem cells caused by pathogenic LRRK2. Nature 491:603–607

DOI

66
Liu X, Liu Z, Sun L, Ren J, Wu Z, Jiang X, Ji Q, Wang Q,Fan Y, Cai Y (2021) Resurrection of human endogenous retroviruses during aging reinforces senescence. bioRxiv. https://doi.org/10. 1101/2021.02.22.432260v1.abstract

67
Lubbe SJ, Bustos B, Hu J, Krainc D, Joseph T, Hehir J, Tan M, Zhang W, Escott-Price V, Williams NM(2021) Assessing the relationship between monoallelic PRKN mutations and Parkinson’s risk. Human Mol Genet 30:78–86

DOI

68
Ma S, Sun S, Geng L, Song M, Wang W, Ye Y, Ji Q, Zou Z, Wang S, He X (2020a) Caloric restriction reprograms the single-cell transcriptional landscape of rattus norvegicus aging. Cell 180 (984–1001):e1022

DOI

69
Ma S, Sun S, Li J, Fan Y, Qu J, Sun L, Wang S, Zhang Y, Yang S, Liu Z (2020b) Single-cell transcriptomic atlas of primate cardiopulmonary aging. Cell Res 31(4):415–432

DOI

70
Malykhin NV, Bouchard TP, Camicioli R, Coupland NJ (2008) Aging hippocampus and amygdala. NeuroReport 19:543–547

DOI

71
Marcos-Contreras OA, Martinez deLizarrondo S, Bardou I, Orset C, Pruvost M, Anfray A, Frigout Y, Hommet Y, Lebouvier L, Montaner J (2016) Hyperfibrinolysis increases blood-brain barrier permeability by a plasmin- and bradykinin-dependent mechanism. Blood 128:2423–2434

DOI

72
Marques S, Zeisel A, Codeluppi S, van Bruggen D, Mendanha Falcao A, Xiao L, Li H, Haring M, Hochgerner H, Romanov RA (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352:1326–1329

DOI

73
Martinelli P, Real FX (2019) Mouse models shed light on the SLIT/ ROBO pathway in pancreatic development and cancer. Trends Cancer 5:145–148

DOI

74
Mauffrey P, Tchitchek N, Barroca V, Bemelmans A-P, Firlej V, Allory Y, Roméo P-H, Magnon C (2019) Progenitors from the central nervous system drive neurogenesis in cancer. Nature 569:672–678

DOI

75
McGinnis CS, Murrow LM, Gartner ZJ (2019) DoubletFinder: doublet detection in single-cell RNA sequencing data using artificial nearest neighbors. Cell Syst 8:329–337.e324

DOI

76
Morrison JH, Baxter MG (2012) The ageing cortical synapse: hallmarks and implications for cognitive decline. Nat Rev Neurosci 13:240–250

DOI

77
Nakamura R, Nakamoto C, Obama H, Durward E, Nakamoto M (2012) Structure-function analysis of Nel, a thrombospondin-1-like glycoprotein involved in neural development and functions. J Biol Chem 287:3282–3291

DOI

78
Navarro Negredo P, Yeo RW, Brunet A (2020) Aging and rejuvenation of neural stem cells and their niches. Cell Stem Cell 27:202–223

DOI

79
Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14:727–736

DOI

80
Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783

DOI

81
Rivero O, Sich S, Popp S, Schmitt A, Franke B, Lesch KP (2013) Impact of the ADHD-susceptibility gene CDH13 on development and function of brain networks. Eur Neuropsychopharmacol 23:492–507

DOI

82
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504

DOI

83
Shi Z, Geng Y, Liu J, Zhang H, Zhou L, Lin Q, Yu J, Zhang K, Liu J, Gao X (2018) Single-cell transcriptomics reveals gene signatures and alterations associated with aging in distinct neural stem/progenitor cell subpopulations. Protein Cell 9:351–364

DOI

84
Simon M, Van Meter M, Ablaeva J, Ke Z, Gonzalez RS, Taguchi T, De Cecco M, Leonova KI, Kogan V, Helfand SL (2019) LINE1 derepression in aged wild-type and SIRT6-deficient mice drives inflammation. Cell Metab 29:871–885

DOI

85
Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF, Magnusson J, Giacomello S, Asp M, Westholm JO, Huss M (2016) Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 353:78–82

DOI

86
Su H, Na N, Zhang X, Zhao Y (2017) The biological function and significance of CD74 in immune diseases. Inflamm Res 66:209–216

DOI

87
Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci 102:15545

DOI

88
Sweeney MD, Sagare AP, Zlokovic BV (2018) Blood-brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat Rev Neurol 14:133–150

DOI

89
Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez-Freire M, Aon MA, Candia J, Zhang P, Cheung F, Fantoni G(2018) Plasma proteomic signature of age in healthy humans. Aging Cell 17:

DOI

90
Tiensuu H, Haapalainen AM, Karjalainen MK, Pasanen A, Huusko JM, Marttila R, Ojaniemi M, Muglia LJ, Hallman M, Ramet M (2019) Risk of spontaneous preterm birth and fetal growth associates with fetal SLIT2. PLoS Genet 15:e1008107

DOI

91
Tilstra JS, Clauson CL, Niedernhofer LJ, Robbins PD (2011) NFkappaB in aging and disease. Aging Dis 2:449–465

92
Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak KJ, Mikkelsen TS, Rinn JL (2014) The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat Biotechnol 32:381–386

DOI

93
Ulland TK, Colonna M (2018) TREM2—a key player in microglial biology and Alzheimer disease. Nat Rev Neurol 14:667–675

DOI

94
Vanlandewijck M, He L, Mae MA, Andrae J, Ando K, Del Gaudio F, Nahar K, Lebouvier T, Lavina B, Gouveia L (2018) A molecular atlas of cell types and zonation in the brain vasculature. Nature 554:475–480

DOI

95
Végh MJ, Rausell A, Loos M, Heldring CM, Jurkowski W, van Nierop P, Paliukhovich I, Li KW, del ASol AB, Smit (2014) Hippocampal extracellular matrix levels and stochasticity in synaptic protein expression increase with age and are associated with age-dependent cognitive decline. Mol Cell Proteom 13:2975–2985

DOI

96
Volkman HE, Stetson DB (2014) The enemy within: endogenous retroelements and autoimmune disease. Nat Immunol 15:415–422

DOI

97
Wang L, Song G, Zhang X, Feng T, Pan J, Chen W, Yang M, Bai X, Pang Y, Yu J (2017) PADI2-mediated citrullination promotes prostate cancer progression. Cancer Res 77:5755–5768

DOI

98
Wang S, Zheng Y, Li J, Yu Y, Zhang W, Song M, Liu Z, Min Z, Hu H, Jing Y(2020a) Single-cell transcriptomic atlas of primate ovarian aging. Cell 180(585–600):e519

DOI

99
Wang S, Zheng Y, Li Q, He X, Ren R, Zhang W, Song M, Hu H, Liu F, Sun G(2020b) Deciphering primate retinal aging at singlecell resolution. Protein Cell. https://doi.org/10.1007/s13238-020-00791-x

DOI

100
Wegiel J, Frackowiak J, Mazur-Kolecka B, Schanen NC, Cook EH Jr, Sigman M, Brown WT, Kuchna I, Wegiel J, Nowicki K(2012) Abnormal intracellular accumulation and extracellular Abeta deposition in idiopathic and Dup15q11.2-q13 autism spectrum disorders. PLoS One 7:e35414

DOI

101
Woo MS, Ufer F, Rothammer N, Di Liberto G, Binkle L, Haferkamp U, Sonner JK, Engler JB, Hornig S, Bauer S (2021) Neuronal metabotropic glutamate receptor 8 protects against neurodegeneration in CNS inflammation. J Exp Med. https://doi.org/10.1084/jem.20201290

DOI

102
Wyss-Coray T (2016) Ageing, neurodegeneration and brain rejuvenation. Nature 539:180–186

DOI

103
Yang X, Goh A, Chen SH, Qiu A (2013) Evolution of hippocampal shapes across the human lifespan. Hum Brain Mapp 34:3075–3085

DOI

104
Yang AC, Stevens MY, Chen MB, Lee DP, Stahli D, Gate D, Contrepois K, Chen W, Iram T, Zhang L (2020) Physiological blood-brain transport is impaired with age by a shift in transcytosis. Nature 583:425–430

DOI

105
Young MD, Behjati S (2020) SoupX removes ambient RNA contamination from droplet-based single-cell RNA sequencing data. GigaScience 9:giaa151

DOI

106
Yu HC, Tung CH, Huang KY, Huang HB, Lu MC (2020) The essential role of peptidylarginine deiminases 2 for cytokines secretion, apoptosis, and cell adhesion in macrophage. Int J Mol Sci 21:5720

DOI

107
Yuan J, Amin P, Ofengeim D (2019) Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases. Nat Rev Neurosci 20:19–33

DOI

108
Zenker M, Bunt J, Schanze I, Schanze D, Piper M, Priolo M, Gerkes EH, Gronostajski RM, Richards LJ, Vogt J (2019) Variants in nuclear factor I genes influence growth and development. Am J Med Genet C Semin Med Genet 181:611–626

DOI

109
Zhang W, Li J, Suzuki K, Qu J, Wang P, Zhou J, Liu X, Ren R, Xu X, Ocampo A (2015) Aging stem cells. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–1163

DOI

110
Zhang W, Wan H, Feng G, Qu J, Wang J, Jing Y, Ren R, Liu Z, Zhang L, Chen Z (2018) SIRT6 deficiency results in developmental retardation in cynomolgus monkeys. Nature 560:661–665

DOI

111
Zhang K, Wang Y, Fan T, Zeng C, Sun ZS (2020a) The p21-activated kinases in neural cytoskeletal remodeling and related neurological disorders. Protein Cell. https://doi.org/10.1007/s13238-020-00812-9

DOI

112
Zhang W, Qu J, Liu GH, Belmonte JCI (2020b) The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 21:137–150

DOI

113
Zhang W, Zhang S, Yan P, Ren J, Song M, Li J, Lei J, Pan H, Wang S, Ma X (2020c) A single-cell transcriptomic landscape of primate arterial aging. Nat Commun 11:2202

DOI

114
Zhong S, Ding W, Sun L, Lu Y, Dong H, Fan X, Liu Z, Chen R, Zhang S, Ma Q(2020) Decoding the development of the human hippocampus. Nature 577:531–536

DOI

115
Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologistoriented resource for the analysis of systems-level datasets. Nat Commun 10:1523

DOI

Outlines

/