RIP1-dependent linear and nonlinear recruitments of caspase-8 and RIP3 respectively to necrosome specify distinct cell death outcomes
Received date: 04 May 2020
Accepted date: 12 Nov 2020
Published date: 15 Nov 2021
Copyright
There remains a significant gap in our quantitative understanding of crosstalk between apoptosis and necroptosis pathways. By employing the SWATH-MS technique, we quantified absolute amounts of up to thousands of proteins in dynamic assembling/deassembling of TNF signaling complexes. Combining SWATH-MS-based network modeling and experimental validation, we found that when RIP1 level is below ∼1000 molecules/cell (mpc), the cell solely undergoes TRADDdependent apoptosis. When RIP1 is above ∼1000 mpc, pro-caspase-8 and RIP3 are recruited to necrosome respectively with linear and nonlinear dependence on RIP1 amount, which well explains the co-occurrence of apoptosis and necroptosis and the paradoxical observations that RIP1 is required for necroptosis but its increase down-regulates necroptosis. Higher amount of RIP1 (>∼46,000 mpc) suppresses apoptosis, leading to necroptosis alone. The relation between RIP1 level and occurrence of necroptosis or total cell death is biphasic. Our study provides a resource for encoding the complexity of TNF signaling and a quantitative picture how distinct dynamic interplay among proteins function as basis sets in signaling complexes, enabling RIP1 to play diverse roles in governing cell fate decisions.
Key words: necrosome; protein complexes quantification; RIP1; SWATH-MS; network modeling
Xiang Li , Chuan-Qi Zhong , Rui Wu , Xiaozheng Xu , Zhang-Hua Yang , Shaowei Cai , Xiurong Wu , Xin Chen , Zhiyong Yin , Qingzu He , Dianjie Li , Fei Xu , Yihua Yan , Hong Qi , Changchuan Xie , Jianwei Shuai , Jiahuai Han . RIP1-dependent linear and nonlinear recruitments of caspase-8 and RIP3 respectively to necrosome specify distinct cell death outcomes[J]. Protein & Cell, 2021 , 12(11) : 858 -876 . DOI: 10.1007/s13238-020-00810-x
1 |
Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347–355
|
2 |
Al Shweiki MR, Monchgesang S, Majovsky P, Thieme D, Trutschel D, Hoehenwarter W (2017) Assessment of label-free quantification in discovery proteomics and impact of technological factors and natural variability of protein abundance. J Proteome Res 16:1410–1424
|
3 |
Albeck JG, Burke JM, Aldridge BB, Zhang M, Lauffenburger DA, Sorger PK (2008) Quantitative analysis of pathways controlling extrinsic apoptosis in single cells. Mol Cell 30:11–25
|
4 |
Bashor CJ, Patel N, Choubey S, Beyzavi A, Kondev J, Collins JJ, Khalil AS (2019) Complex signal processing in synthetic gene circuits using cooperative regulatory assemblies. Science 364:593–597
|
5 |
Berger SB, Kasparcova V, Hoffman S, Swift B, Dare L, Schaeffer M, Capriotti C, Cook M, Finger J,Hughes-Earle A
|
6 |
Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H ,Vandenabeele P (2014) Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol 15:134–146
|
7 |
Brenner D, Blaser H, Mak TW (2015) Regulation of tumour necrosis factor signalling: live or let die. Nat Rev Immunol 15:362–374
|
8 |
Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, Ward Y, Wu LG, Liu ZG (2014) Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol 16:55–65
|
9 |
Chen W, Wu J, Li L, Zhang Z, Ren J, Liang Y, Chen F, Yang C,Zhou Z, Su SS
|
10 |
Chen WW, Yu H, Fan HB,Zhang CC , Zhang M, Zhang C, Cheng Y, Kong J, Liu CF, Geng D
|
11 |
Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299
|
12 |
Dillon CP, Weinlich R, Rodriguez DA, Cripps JG, Quarato G, Gurung P, Verbist KC, Brewer TL, Llambi F, Gong YN
|
13 |
Dondelinger Y, Delanghe T, Rojas-Rivera D, Priem D, Delvaeye T, Bruggeman I, Herreweghe FV, Vandenabeele P,Bertrand MJM (2017) MK2 phosphorylation of RIPK1 regulates TNF-mediated cell death. Nat Cell Biol 19:1237–1247
|
14 |
Duprez L, Bertrand MJ, Vanden Berghe T, Dondelinger Y, Festjens N, Vandenabeele P (2012) Intermediate domain of receptorinteracting protein kinase 1 (RIPK1) determines switch between necroptosis and RIPK1 kinase-dependent apoptosis. J Biol Chem 287:14863–14872
|
15 |
Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81:2340–2361
|
16 |
Han J, Zhong CQ, Zhang DW (2011) Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat. Immunol. 12:1143–1149
|
17 |
Jaco I, Annibaldi A, Lalaoui N, Wilson R, Tenev T, Laurien L, Kim C, Jamal K, John SW, Liccardi G
|
18 |
Kaiser WJ, Daley-Bauer LP, Thapa RJ, Mandal P, Berger SB, Huang C, Sundararajan A, Guo H, Roback L, Speck SH
|
19 |
Kitano H (2005) International alliances for quantitative modeling in systems biology. Mol Syst Biol 1:1
|
20 |
Li Y, Zhong CQ, Xu X, Cai S, Wu X, Zhang Y, Chen J, Shi J, Lin S, Han J (2015) Group-DIA: analyzing multiple data-independent acquisition mass spectrometry data files. Nat Methods 12:1105–1106
|
21 |
Ludwig C,Gillet L, Rosenberger G,Amon S, Collins BC, Aebersold R (2018) Data-independent acquisition-based SWATH-MS for quantitative proteomics: a tutorial. Mol Syst Biol 14:e8126
|
22 |
Ma W, Trusina A, El-Samad H, Lim WA, Tang C (2009) Defining network topologies that can achieve biochemical adaptation. Cell 138:760–773
|
23 |
Meng H, Liu Z, Li X, Wang H, Jin T, Wu G, Shan B, Christofferson DE, Qi C, Yu Q, Li Y, Yuan J (2018) Death-domain dimerizationmediated activation of RIPK1 controls necroptosis and RIPK1-dependent apoptosis. Proc Natl Acad Sci USA 115:E2001–E2009
|
24 |
Mompean M, Li W, Li J, Laage S, Siemer AB, Bozkurt G, Wu H, McDermott AE (2018) The structure of the necrosome RIPK1-RIPK3 core, a human hetero-amyloid signaling complex. Cell 173:1244–1253
|
25 |
Nakakuki T, Birtwistle MR, Saeki Y, Yumoto N, Ide K, Nagashima T, Brusch L, Ogunnaike BA, Okada-Hatakeyama M, Kholodenko BN (2010) Ligand-specific c-fos expression emerges from the spatiotemporal control of erbb network dynamics. Cell 141:884–896
|
26 |
Newton K, Wickliffe KE, Dugger DL, Maltzman A, Roose-Girma M, Dohse M, Kőműves L, Webster JD, Dixit VM (2019a) Cleavage of RIPK1 by caspase-8 is crucial for limiting apoptosis and necroptosis. Nature 574:428–431
|
27 |
Newton K, Wickliffe KE, Maltzman A, Dugger DL, Reja R, Zhang Y, Roose-Girma M, Modrusan Z, Sagolla MS, Webster JD, Dixit VM (2019b) Activity of caspase-8 determines plasticity between cell death pathways. Nature 575:679–682
|
28 |
Newton K, Wickliffe KE, Maltzman A, Dugger DL, Strasser A, Pham VC, Lill JR, Roose-Girma M, Warming S, Solon M
|
29 |
Oberst A, Dillon CP, Weinlich R, McCormick L, Fitzgerald P, Pop C, Hakem R, Salvesen GS, Green DR (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471:363–367
|
30 |
Ofengeim D, Yuan J (2013) Regulation of RIP1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol 14:727–736
|
31 |
Orozco S, Yatim N, Werner MR, Tran H, Gunja SY, Tait SW, Albert ML, Green DR, Oberst A (2014) RIPK1
|
32 |
Remijsen Q, Goossens V, Grootjans S, Van den Haute C, Vanlangenakker N, Dondelinger Y, Roelandt R, Bruggeman I, Goncalves A, Bertrand MJ
|
33 |
Rickard JA, O’Donnell JA, Evans JM, Lalaoui N, Poh AR, Rogers T, Vince JE, Lawlor KE, Ninnis RL, Anderton H
|
34 |
Shinohara H, Behar M, Inoue K, Hiroshima M, Yasuda T, Nagashima T, Kimura S, Sanjo H, Maeda S, Yumoto N
|
35 |
Someda M, Kuroki S, Miyachi H, Tachibana M, Yonehara S (2020) Caspase-8, receptor-interacting protein kinase 1 (ripk1), and ripk3 regulate retinoic acid-induced cell differentiation and necroptosis. Cell Death Differ 27:1539–1553
|
36 |
Suda J, Dara L, Yang L, Aghajan M, Song Y, Kaplowitz N, Liu ZX (2016) Knockdown of RIPK1 markedly exacerbates murine immune-mediated liver injury through massive apoptosis of hepatocytes, independent of necroptosis and inhibition of NF- κB. J Immunol 197:3120–3129
|
37 |
Tummers B, Green DR (2017) Caspase-8: regulating life and death. Immunol Rev 277:76–89
|
38 |
Vanlangenakker N, Bertrand MJ, Bogaert P, Vandenabeele P,Vanden Berghe T (2011) TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis 2:e230
|
39 |
Wang CH, Naik NG, Liao LL, Wei SC, Chao YC (2017) Global screening of antiviral genes that suppress baculovirus transgene expression in mammalian cells. Mol Therapy Methods Clin Dev 6:194–206
|
40 |
Wang L, Du F, Wang X (2008) TNF-α induces two distinct caspase-8 activation pathways. Cell 133:693–703
|
41 |
Wang L, Shi X, Zheng S, Xu S (2020) Selenium deficiency exacerbates lps-induced necroptosis by regulating mir-16-5p targeting pi3k in chicken tracheal tissue. Metallomics 12:562–571
|
42 |
Weinlich R, Green DR (2014) The two faces of receptor interacting protein kinase-1. Mol Cell 56:469–480
|
43 |
Wu H (2013) Higher-order assemblies in a new paradigm of signal transduction. Cell 153:287–292
|
44 |
Xu D, Jin T, Zhu H, Chen H, Ofengeim D, Zou C, Mifflin L, Pan L, Amin P, Li W
|
45 |
Yang R, Huang B, Zhu Y, Li Y, Liu F, Shi J (2018) Cell typedependent bimodal p53 activation engenders a dynamic mechanism of chemoresistance. Sci Adv 4:5077
|
46 |
Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ, Han J (2009) RIP3, an energy metabolism regulator that switches TNFinduced cell death from apoptosis to necrosis. Science 325:332–336
|
47 |
Zheng L, Bidere N, Staudt D, Cubre A, Orenstein J, Chan FK, Lenardo M (2006) Competitive control of independent programs of tumor necrosis factor receptor-induced cell death by TRADD and RIP1. Mol Cell Biol 26:3505–3513
|
/
〈 | 〉 |