RESEARCH ARTICLE

PCGF6 regulates stem cell pluripotency as a transcription activator via super-enhancer dependent chromatin interactions

  • Xiaona Huang 1,2,3,4 ,
  • Chao Wei 1,2,3,4 ,
  • Fenjie Li 1,2,3,4 ,
  • Lumeng Jia 5 ,
  • Pengguihang Zeng 1,2,3 ,
  • Jiahe Li 1,2,3 ,
  • Jin Tan 1,2,3 ,
  • Tuanfeng Sun 1,2,3 ,
  • Shaoshuai Jiang 1,2,3 ,
  • Jia Wang 1,2,3 ,
  • Xiuxiao Tang 1,2,3 ,
  • Qingquan Zhao 1,2,3 ,
  • Bin Liu 6 ,
  • Limin Rong 6 ,
  • Cheng Li 5 ,
  • Junjun Ding , 1,2,3,4,7
Expand
  • 1. RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
  • 2. Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
  • 3. Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
  • 4. Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
  • 5. Center for Bioinformatics, School of Life Sciences, Peking University, Beijing 100871, China
  • 6. Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
  • 7. Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China & Correspondence

Received date: 18 Jan 2019

Accepted date: 15 Apr 2019

Published date: 15 Oct 2019

Copyright

2019 The Author(s)

Abstract

Polycomb group (PcG) ring finger protein 6 (PCGF6), though known as a member of the transcription-repressing complexes, PcG, also has activation function in regulating pluripotency gene expression. However, the mechanism underlying the activation function of PCGF6 is poorly understood. Here, we found that PCGF6 co-localizes to gene activation regions along with pluripotency factors such as OCT4. In addition, PCGF6 was recruited to a subset of the super-enhancer (SE) regions upstream of cell cycle-associated genes by OCT4, and increased their expression. By combining with promoter capture Hi-C data, we found that PCGF6 activates cell cycle genes by regulating SE-promoter interactions via 3D chromatin. Our findings highlight a novel mechanism of PcG protein in regulating pluripotency, and provide a research basis for the therapeutic application of pluripotent stem cells.

Cite this article

Xiaona Huang , Chao Wei , Fenjie Li , Lumeng Jia , Pengguihang Zeng , Jiahe Li , Jin Tan , Tuanfeng Sun , Shaoshuai Jiang , Jia Wang , Xiuxiao Tang , Qingquan Zhao , Bin Liu , Limin Rong , Cheng Li , Junjun Ding . PCGF6 regulates stem cell pluripotency as a transcription activator via super-enhancer dependent chromatin interactions[J]. Protein & Cell, 2019 , 10(10) : 709 -725 . DOI: 10.1007/s13238-019-0629-9

1
Akasaka T, Takahashi N, Suzuki M, Koseki H, Bodmer R, Koga H (2002) MBLR, a new RING finger protein resembling mammalian Polycomb gene products, is regulated by cell cycle-dependent phosphorylation . Genes Cells 7(8):835–850

DOI

2
Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B (2011) Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network . Cell 145(2):183–197

DOI

3
Ben-Porath I, Thomson MW, Carey VJ, Ge R, Bell GW, Regev A, Weinberg RA (2008) An embryonic stem cell-like gene expres- sion signature in poorly differentiated aggressive human tumors . Nat Genet 40(5):499–507

DOI

4
Bickmore WA (2013) The spatial organization of the human genome . Annu Rev Genomics Hum Genet 14:67–84

DOI

5
Buecker C, Srinivasan R, Wu Z, Calo E, Acampora D, Faial T, Simeone A, Tan M, Swigut T, Wysocka J (2014) Reorganization of enhancer patterns in transition from naive to primed pluripo- tency . Cell Stem Cell 14(6):838–853

DOI

6
Cao R, Wang LJ, Wang HB, Xia L, Erdjument-Bromage H, Tempst P, Jones RS, Zhang Y (2002) Role of histone H3 lysine 27 methylation in polycomb-group silencing . Science 298 (5595):1039–1043

DOI

7
Cao R, Tsukada Y, Zhang Y (2005) Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing . Mol Cell 20(6):845–854

DOI

8
Chen X, Xu H, Yuan P, Fang F, Huss M, Vega VB, Wong E, Orlov YL, Zhang W, Jiang J (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells . Cell 133(6):1106–1117

DOI

9
Costa Y, Ding J, Theunissen TW, Faiola F, Hore TA, Shliaha PV, Fidalgo M, Saunders A, Lawrence M, Dietmann S (2013) NANOG-dependent function of TET1 and TET2 in establishment of pluripotency . Nature 495(7441):370–374

DOI

10
de Graaf CA, van Steensel B (2013) Chromatin organization: form to function . Curr Opin Genet Dev 23(2):185–190

DOI

11
de Laat W, Duboule D (2013) Topology of mammalian developmen- tal enhancers and their regulatory landscapes . Nature 502 (7472):499–506

DOI

12
de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, Appanah R, Nesterova TB, Silva J, Otte AP, Vidal M (2004) Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation . Dev Cell 7(5):663–676

DOI

13
Endoh M, Endo TA, Shinga J, Hayashi K, Farcas A, Ma KW, Ito S, Sharif J, Endoh T, Onaga N (2017) PCGF6-PRC1 suppresses premature differentiation of mouse embryonic stem cells by regulating germ cell-related genes . Elife 6:e21064

DOI

14
Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos . Nature 292(5819):154–156

DOI

15
Francis NJ, Saurin AJ, Shao Z, Kingston RE (2001) Reconstitution of a functional core polycomb repressive complex . Mol Cell 8 (3):545–556

DOI

16
Gao Z, Zhang J, Bonasio R, Strino F, Sawai A, Parisi F, Kluger Y, Reinberg D (2012) PCGF homologs, CBX proteins, and RYBP define functionally distinct PRC1 family complexes . Mol Cell 45 (3):344–356

DOI

17
Heng JC, Feng B, Han J, Jiang J, Kraus P, Ng JH, Orlov YL, Huss M, Yang L, Lufkin T (2010) The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells . Cell Stem Cell 6(2):167–174

DOI

18
Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease . Cell 155(4):934–947

DOI

19
Hu G, Kim J, Xu Q, Leng Y, Orkin SH, Elledge SJ (2009) A genomewide RNAi screen identifies a new transcriptional module required for self-renewal . Genes Dev 23(7):837–848

DOI

20
Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J, DeCoste C, Schafer X, Lun Y, Lemischka IR (2006) Dissecting self-renewal in stem cells with RNA interference . Nature 442(7102):533–538

DOI

21
Jaenisch R, Young R (2008) Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming . Cell 132(4):567–582

DOI

22
Ji X, Dadon DB, Powell BE, Fan ZP, Borges-Rivera D, Shachar S, Weintraub AS, Hnisz D, Pegoraro G, Lee TI (2016) 3D chromosome regulatory landscape of human pluripotent cells . Cell Stem Cell 18(2):262–275

DOI

23
Joshi O, Wang SY, Kuznetsova T, Atlasi Y, Peng T, Fabre PJ, Habibi E, Shaik J, Saeed S, Handoko L (2015) Dynamic reorganization of extremely long-range promoter-promoter inter- actions between two states of pluripotency . Cell Stem Cell 17 (6):748–757

DOI

24
Kagey MH, Newman JJ, Bilodeau S, Zhan Y, Orlando DA, van Berkum NL, Ebmeier CC, Goossens J, Rahl PB, Levine SS (2010) Mediator and cohesin connect gene expression and chromatin architecture . Nature 467(7314):430–435

DOI

25
Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells . Cell 132(6):1049–1061

DOI

26
Krijger PH, Di Stefano B, de Wit E, Limone F, van Oevelen C, de Laat W, Graf T (2016) Cell-of-origin-specific 3D genome structure acquired during somatic cell reprogramming . Cell Stem Cell 18 (5):597–610

DOI

27
Lee TI, Johnstone SE, Young RA (2006) Chromatin immunoprecipitation and microarray-based analysis of protein location . Nat Protoc 1(2):729–748

DOI

28
Lewis EB (1978) A gene complex controlling segmentation in Drosophila . Nature 276(5688):565–570

DOI

29
Margueron R, Reinberg D (2011) The Polycomb complex PRC2 and its mark in life . Nature 469(7330):343–349

DOI

30
Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells . Proc Natl Acad Sci U S A 78(12):7634–7638

DOI

31
Mas G, Blanco E, Ballare C, Sanso M, Spill YG, Hu D, Aoi Y, Le Dily F, Shilatifard A, Marti-Renom MA (2018) Promoter bivalency favors an open chromatin architecture in embryonic stem cells . Nat Genet 50(10):1452–1462

DOI

32
Niwa H, Miyazaki J, Smith AG (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells . Nat Genet 24(4):372–376

DOI

33
Schoenfelder S, Sugar R, Dimond A, Javierre BM, Armstrong H, Mifsud B, Dimitrova E, Matheson L, Tavares-Cadete F, Furlan-Magaril M (2015) Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome . Nat Genet 47(10):1179–1186

DOI

34
Schuettengruber B, Cavalli G (2009) Recruitment of polycomb group complexes and their role in the dynamic regulation of cell fate choice . Development 136(21):3531–3542

DOI

35
Schuettengruber B, Martinez AM, Iovino N, Cavalli G (2011) Trithorax group proteins: switching genes on and keeping them active . Nat Rev Mol Cell Biol 12(12):799–814

DOI

36
Schwartz YB, Pirrotta V (2013) A new world of Polycombs: unexpected partnerships and emerging functions . Nat Rev Genet 14(12):853–864

DOI

37
Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition . PLoS Biol 6(10):e253

DOI

38
Singh AM, Dalton S (2009) The cell cycle and Myc intersect with mechanisms that regulate pluripotency and reprogramming . Cell Stem Cell 5(2):141–149

DOI

39
Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, Sabatini DM, Chen IS, Hahn WC, Sharp PA (2003) Lentivirus-delivered stable gene silencing by RNAi in primary cells . RNA 9(4):493–501

DOI

40
Wang L, Brown JL, Cao R, Zhang Y, Kassis JA, Jones RS (2004) Hierarchical recruitment of polycomb group silencing complexes . Mol Cell 14(5):637–646

DOI

41
Weintraub AS, Li CH, Zamudio AV, Sigova AA, Hannett NM, Day DS, Abraham BJ, Cohen MA, Nabet B, Buckley DL (2017) YY1 Is a structural regulator of enhancer-promoter loops . Cell 171(7):1573–1588

DOI

42
White J, Dalton S (2005) Cell cycle control of embryonic stem cells . Stem Cell Rev 1(2):131–138

DOI

43
Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes . Cell 153(2):307–319

DOI

44
Yang CS, Chang KY, Dang J, Rana TM (2016) Polycomb group protein Pcgf6 acts as a master regulator to maintain embryonic stem cell identity . Sci Rep 6:26899

DOI

45
Zdzieblo D, Li X, Lin Q, Zenke M, Illich DJ, Becker M, Muller AM (2014) Pcgf6, a polycomb group protein, regulates mesodermal lineage differentiation in murine ESCs and functions in iPS reprogramming . Stem Cells 32(12):3112–3125

DOI

Outlines

/